Skip to content

Commit

Permalink
Merge branch 'main' into feature/add-vllm-deploy
Browse files Browse the repository at this point in the history
  • Loading branch information
ruiyiw authored Nov 6, 2023
2 parents 7dcbbe9 + 2fbcb77 commit 46373f1
Show file tree
Hide file tree
Showing 9 changed files with 372 additions and 3 deletions.
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,4 +6,5 @@ We split our overall framework into multiple parts
2. Together AI Finetuning --> Input the train and test data / Output model checkpoint
3. LLM Finetuning --> Input the train and test data / Output model checkpoint
4. LLM Deplyment --> Input LLM Finetuned model checkpoint / Output Deployable OpenAI type API
5. Eval --> Input model checkpoint / Output evaluation scores
5. Eval --> Input model checkpoint / Output evaluation scores
6. Generate --> Input None / Output new data on redis
5 changes: 3 additions & 2 deletions llm_deploy/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -80,11 +80,11 @@ ssh -J babel babel-x-xx

### Install cuda-toolkit (optional)
Due to the issue with vllm: https://github.com/vllm-project/vllm/issues/1283, we need to use cuda-toolkit=11.7.0 that is compatible with Pytorch 2.0.1.
1. Install cuda-toolkit=11.7.0 on conda environment
Install cuda-toolkit=11.7.0 on conda environment
```bash
conda install -c "nvidia/label/cuda-11.7.0" cuda-toolkit
```
2. Check cuda-toolkit version
Check cuda-toolkit version
```bash
nvcc -V
```
Expand Down Expand Up @@ -164,6 +164,7 @@ If the above command runs successfully, you should be able to use REST API on yo




## Userful resource links for babel
1. https://hpc.lti.cs.cmu.edu/wiki/index.php?title=BABEL#Cluster_Architecture
2. https://hpc.lti.cs.cmu.edu/wiki/index.php?title=VSCode
Expand Down
9 changes: 9 additions & 0 deletions llm_generate/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
# Data Generation

For the first step, we generate envProfile (including scenario / social goal / relationship restriction) based on inspiring prompt.

For the second step, we put the original agentProfile and relationshipProfile into our new redis database

For the third step, we combine them together to be combos based on conditiona sampling (the restriction is the relationship)

All the EnvProfile (new generated), AgentProfile (sotopia original), RelationshipProfile (sotopia original), and envagentcombo are on the redis database that is new created.
135 changes: 135 additions & 0 deletions llm_generate/generate_specific_envs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
"""This file is used to generate specific environments based on existing
datasets. The generation functions below should call agenerate_env_profile
in `sotopia/generation_utils/generate.py` with the appropriate parameters.
Here are the datasets we have so far:
1. Mutual-Friend (https://huggingface.co/datasets/mutual_friends)
"""
import asyncio
from typing import Hashable

import datasets
import names
import numpy as np
from datasets import DatasetDict, load_dataset

from generate import (
ListOfStrOutputParser,
StrOutputParser,
agenerate,
generate,
)


async def generate_mutual_friend_envs() -> tuple[str, list[str]]:
"""Generate environments based on the mutual-friend dataset."""
mutual_friend_dataset: DatasetDict = load_dataset("mutual_friends")
all_data = mutual_friend_dataset["train"]
# sample one datum from all data
datum = np.random.choice(all_data)
friends = datum["scenario_kbs"]
num_of_friends_in_total = sum(map(len, friends))
# generate names for the friends
set_of_names = set()
for _ in range(num_of_friends_in_total):
name = names.get_first_name()
while name in set_of_names:
name = names.get_first_name()
set_of_names.add(name)
list_of_names = list(set_of_names)
friend_map: dict[tuple[str, ...], str] = {}
friend_list_map: list[list[str]] = [[] for _ in range(len(friends))]
friend_description_keys: list[str] = datum["scenario_attributes"]["name"]
name_pointer = 0
for i, friends_array in enumerate(friends):
for friend in friends_array:
assert (
len(friend) == 2
) # in [[key1, key2, ...], [value1, value2, ...]] format
if not tuple(friend[1]) in friend_map:
friend_map[tuple(friend[1])] = list_of_names[name_pointer]
name_pointer += 1
friend_list_map[i].append(friend_map[tuple(friend[1])])
friend_set_map: list[set[str]] = [
set(friend_list) for friend_list in friend_list_map
]
common_friends = []
for friend_description, friend_name in friend_map.items():
if all([friend_name in friend_set for friend_set in friend_set_map]):
common_friends.append(friend_name)
scenario = (
f'{len(friends)} strangers are meeting at a party. <p viewer="environment">They have {len(common_friends)} common friends: '
f"{', '.join(common_friends[:-1])}"
+ (" and " if len(common_friends) > 1 else "")
+ common_friends[-1]
+ ".</p>"
)
goals: list[str] = []
for friends_array in friends:
template = f"You are trying to figure out whether you have a mutual friend with the other person. \n"
template += f"<extra_info> You know the following friends"
for friend in friends_array:
friend_name = friend_map[tuple(friend[1])]
friend_description = friend[1]
template += f" {friend_name}: {' '.join([(i + ': ' + j + ' ') if i != 'Name' else '' for i, j in zip(friend[0], friend_description)])}\n"
template += f"</extra_info>"
goals.append(template)

return scenario, goals


async def generate_craigslist_bargains_envs() -> tuple[str, list[str]]:
"""Generate environments based on the craigslist_bargains dataset."""
craigslist_bargains_dataset: DatasetDict = load_dataset(
"craigslist_bargains"
)
all_data = craigslist_bargains_dataset["train"]
# sample one datum from all data
datum = np.random.choice(all_data)
scenario = generate(
model_name="gpt-4",
template="The following sentence is automatically generated with the following"
'template: "One person is selling <item> for <price>, another person is'
'trying to buy it. Here is the description of the item: <description>." with item = {title}, '
"price={price}, and description={description} Please make the sentence"
"fluent and natural.",
input_values={
"title": datum["items"]["Title"][0],
"price": datum["items"]["Price"][0],
"description": datum["items"]["Description"][0],
},
output_parser=StrOutputParser(),
)

goals: list[str] = []
for i in range(2):
if datum["agent_info"]["Role"][i] == "seller":
markup_ratio = np.random.exponential(0.5)
datum["agent_info"]["Target"][i] = datum["items"]["Price"][0] / (
1 + markup_ratio
)
goal = generate(
model_name="gpt-4",
template="The following sentence is automatically generated with the following"
'template: "You want to <role> this item. Your target price '
"is $<price> (round up to two decimals). You will get penalty if you sell or buy it "
"for a price that is significantly lower than (if <role> is seller) or significantly"
"higher than (if <role> is buyer) the target price, but will get bonus if you successfully "
"sell it higher than the target price (if <role> is seller) or buy it for lower than"
'the target price (if <role> is buyer)." '
"with role = {role} and price = {price}. Please make the sentence"
"fluent and natural. Do not change the original meaning of the sentence.",
input_values={
"role": datum["agent_info"]["Role"][i],
"price": datum["agent_info"]["Target"][i],
},
output_parser=StrOutputParser(),
)
goals.append(goal)

return scenario, goals


if __name__ == '__main__':
for i in range(10):
scenario, goals = asyncio.run(generate_mutual_friend_envs())
import pdb; pdb.set_trace()
1 change: 1 addition & 0 deletions llm_generate/requirments.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
sotopia
51 changes: 51 additions & 0 deletions llm_generate/step1_generate_env_profile.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
import asyncio
import random
from typing import TypeVar
from tqdm import tqdm

import pandas as pd
import rich
from pydantic import BaseModel

from sotopia.database import EnvironmentProfile
from sotopia.generation_utils.generate import agenerate_env_profile

random.seed(41)

env_borrowMoney = EnvironmentProfile.find(
EnvironmentProfile.codename == "borrow_money"
).all()[0]
env_roadtrip = EnvironmentProfile.find(
EnvironmentProfile.codename == "take_turns"
).all()[0]
env_prisonerDillema = EnvironmentProfile.find(
EnvironmentProfile.codename == "prison_dilemma"
).all()[0]

examples = f"{env_borrowMoney.json()}\n\n{env_roadtrip.json()}\n\n{env_prisonerDillema.json()}"

ins_prompts = pd.read_csv("./inspirational_prompt_for_env.csv")
prompts = ins_prompts["prompt"].tolist()

T = TypeVar("T", bound=BaseModel)


def pydantics_to_csv(filename: str, data: list[T]) -> None:
pd.DataFrame([item.dict() for item in data]).to_csv(filename, index=False)


backgrounds = []
for prompt in tqdm(prompts):
rich.print(prompt)
background, prompt_full = asyncio.run(
agenerate_env_profile(
model_name="gpt-4",
inspiration_prompt=prompt,
examples=examples,
)
)
rich.print(background)
rich.print(prompt_full)
backgrounds.append(background)

pydantics_to_csv("./backgrounds.csv", backgrounds)
150 changes: 150 additions & 0 deletions llm_generate/step2_push_agent_relationship_env_to_db.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
import ast
import sys
from typing import Any, cast

import pandas as pd
from redis_om import Migrator

from sotopia.database.persistent_profile import (
AgentProfile,
EnvironmentProfile,
RelationshipProfile,
)
from sotopia.database.env_agent_combo_storage import EnvAgentComboStorage
from sotopia.samplers import ConstraintBasedSampler
from sotopia.messages import AgentAction, Observation
from sotopia.agents import LLMAgent



def add_agent_to_database(**kwargs: dict[str, Any]) -> None:
agent = AgentProfile(**kwargs)
agent.save()


def add_agents_to_database(agents: list[dict[str, Any]]) -> None:
for agent in agents:
add_agent_to_database(**agent)


def retrieve_agent_by_first_name(first_name: str) -> AgentProfile:
result = AgentProfile.find(AgentProfile.first_name == first_name).all()
if len(result) == 0:
raise ValueError(f"Agent with first name {first_name} not found")
elif len(result) > 1:
raise ValueError(f"Multiple agents with first name {first_name} found")
else:
assert isinstance(result[0], AgentProfile)
return result[0]


def add_env_profile(**kwargs: dict[str, Any]) -> None:
env_profile = EnvironmentProfile(**kwargs)
env_profile.save()


def add_env_profiles(env_profiles: list[dict[str, Any]]) -> None:
for env_profile in env_profiles:
add_env_profile(**env_profile)


def add_relationship_profile(**kwargs: dict[str, Any]) -> None:
relationship_profile = RelationshipProfile(**kwargs)
relationship_profile.save()


def add_relationship_profiles(
relationship_profiles: list[dict[str, Any]]
) -> None:
for relationship_profile in relationship_profiles:
add_relationship_profile(**relationship_profile)


def delete_all_agents() -> None:
pks = AgentProfile.all_pks()
pks_list = list(pks)
for id in pks:
AgentProfile.delete(id)


def delete_all_env_profiles() -> None:
pks = EnvironmentProfile.all_pks()
#for id in pks:
# EnvironmentProfile.delete(id)


def delete_all_relationships() -> None:
pks = list(RelationshipProfile.all_pks())
#for id in pks:
# RelationshipProfile.delete(id)
pks = list(RelationshipProfile.all_pks())
print("Relationships deleted, all relationships: ", len(list(pks)))


def sample_env_agent_combo_and_push_to_db(env_id: str) -> None:
sampler = ConstraintBasedSampler[Observation, AgentAction](
env_candidates=[env_id]
)
try:
env_agent_combo_list = list(
sampler.sample(agent_classes=[LLMAgent] * 2, replacement=False)
)
except:
return
print(len(env_agent_combo_list))
for env, agent in env_agent_combo_list:
EnvAgentComboStorage(
env_id=env.profile.pk,
agent_ids=[agent[0].profile.pk, agent[1].profile.pk],
).save()


def relationship_map(relationship: str) -> int:
return int(eval(relationship))


if __name__ == "__main__":
assert (
len(sys.argv) == 3
), "Please provide a csv file with agent or environment profiles, and the type of profile (agent or environment)"
df = pd.read_csv(sys.argv[1])
type = sys.argv[2]
if type == "agent":
agents = cast(list[dict[str, Any]], df.to_dict(orient="records"))
for agent in agents:
agent["age"] = int(agent["age"])
agent["moral_values"] = agent["moral_values"].split(",")
agent["schwartz_personal_values"] = agent[
"schwartz_personal_values"
].split(",")
add_agents_to_database(agents)
Migrator().run()
elif type == "environment":
df = df[
[
"codename",
"scenario",
"agent_goals",
"relationship",
"age_constraint",
"occupation_constraint",
"source",
]
]
envs = cast(list[dict[str, Any]], df.to_dict(orient="records"))
for env in envs:
env["agent_goals"] = ast.literal_eval(env["agent_goals"])
assert isinstance(env["relationship"], int)
Migrator().run()
elif type == "relationship":
relationships = cast(
list[dict[str, Any]], df.to_dict(orient="records")
)
for relationship in relationships:
assert isinstance(relationship["relationship"], int)
add_relationship_profiles(relationships)
Migrator().run()
elif type == 'agentenvcombo':
env_ids = list(EnvironmentProfile.all_pks())
for env_id in env_ids:
sample_env_agent_combo_and_push_to_db(env_id)
10 changes: 10 additions & 0 deletions llm_generate/test_redis1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
import redis

r = redis.Redis(
host='us1-normal-burro-37804.upstash.io',
port=37804,
password='a870a438f928424bb507d5895b3ab3fc'
)

r.set('foo', 'bar')
print(r.get('foo'))
Loading

0 comments on commit 46373f1

Please sign in to comment.