-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add 2qa * save * change prompt * eval v2 * add tables * add reviewer, prompt * add reviews * rename * tables * new line * update * update * rename
- Loading branch information
1 parent
b63fdd6
commit bb558d8
Showing
16 changed files
with
1,016 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import argparse | ||
from transformers import AutoTokenizer, AutoModelForCausalLM | ||
import torch | ||
import os | ||
import json | ||
from tqdm import tqdm | ||
import ray | ||
|
||
from chatserver.conversation import default_conversation | ||
from chatserver.utils import disable_torch_init | ||
|
||
@ray.remote(num_gpus=1) | ||
@torch.inference_mode() | ||
def eval_model(model_name, questions_file, answers_file): | ||
# Model | ||
disable_torch_init() | ||
model_name = os.path.expanduser(model_name) | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
model = AutoModelForCausalLM.from_pretrained(model_name, | ||
torch_dtype=torch.float16).cuda() | ||
|
||
|
||
qa_file = open(os.path.expanduser(questions_file), "r") | ||
ans_file = open(os.path.expanduser(answers_file), "w") | ||
for i, line in enumerate(tqdm(qa_file)): | ||
idx = json.loads(line)["id"] | ||
qs = json.loads(line)["question"] | ||
cat = json.loads(line)["category"] | ||
conv = default_conversation.copy() | ||
conv.append_message(conv.roles[0], qs) | ||
prompt = conv.get_prompt() | ||
inputs = tokenizer([prompt]) | ||
output_ids = model.generate( | ||
torch.as_tensor(inputs.input_ids).cuda(), | ||
do_sample=True, | ||
temperature=0.7, | ||
max_new_tokens=1024) | ||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | ||
try: | ||
index = outputs.index(conv.sep, len(prompt)) | ||
except ValueError: | ||
outputs += conv.sep | ||
index = outputs.index(conv.sep, len(prompt)) | ||
|
||
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip() | ||
ans_file.write(json.dumps({"id": idx, "answer": outputs, "category": cat}) + "\n") | ||
ans_file.flush() | ||
ans_file.close() | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m") | ||
parser.add_argument("--questions-file", type=str, default="mini_evals/qa.jsonl") | ||
parser.add_argument("--answers-file", type=str, default="answers.jsonl") | ||
args = parser.parse_args() | ||
|
||
ray.init() | ||
handle = [] | ||
for i in range(1, 5): | ||
model_name = args.model_name | ||
model_name.replace('~/', '') | ||
print(model_name) | ||
question_file = f'mini_evals/qa_v2-{i}.jsonl' | ||
answers_file = f'answers/v4/answers-v2-{i}.jsonl' | ||
handle.append(eval_model.remote(model_name, question_file, answers_file)) | ||
|
||
results = ray.get(handle) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import argparse | ||
import json | ||
import os | ||
|
||
import openai | ||
import tqdm | ||
import ray | ||
import time | ||
|
||
@ray.remote(num_cpus=4) | ||
def get_eval(content: str, max_tokens: int): | ||
try: | ||
response = openai.ChatCompletion.create( | ||
model='gpt-4', | ||
messages=[{ | ||
'role': 'system', | ||
'content': 'You are a helpful and precise assistant for checking the quality of the answer.' | ||
}, { | ||
'role': 'user', | ||
'content': content, | ||
}], | ||
temperature=0.2, # TODO: figure out which temperature is best for evaluation | ||
max_tokens=max_tokens, | ||
) | ||
except Exception as e: | ||
print(e) | ||
return 'error' | ||
return response['choices'][0]['message']['content'] | ||
|
||
|
||
def parse_score(review): | ||
try: | ||
score_pair = review.split('\n')[0] | ||
score_pair = score_pair.replace(',', ' ') | ||
sp = score_pair.split(' ') | ||
if len(sp) == 2: | ||
return [float(sp[0]), float(sp[1])] | ||
else: | ||
print('error', review) | ||
return [-1, -1] | ||
except Exception as e: | ||
print(e) | ||
print('error', review) | ||
return [-1, -1] | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') | ||
parser.add_argument('-q', '--question') | ||
# parser.add_argument('-a', '--answer') | ||
parser.add_argument('-a', '--answer-list', nargs='+', default=[]) | ||
parser.add_argument('-r', '--rule') | ||
parser.add_argument('-o', '--output') | ||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') | ||
args = parser.parse_args() | ||
|
||
ray.init() | ||
|
||
f_q = open(os.path.expanduser(args.question)) | ||
f_ans1 = open(os.path.expanduser(args.answer_list[0])) | ||
f_ans2 = open(os.path.expanduser(args.answer_list[1])) | ||
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r')) | ||
|
||
review_file = open(f'{args.output}', 'w') | ||
|
||
js_list = [] | ||
handles = [] | ||
idx = 0 | ||
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2): | ||
# if idx == 10: | ||
# break | ||
|
||
ques = json.loads(ques_js)['question'] | ||
ans1 = json.loads(ans1_js)['answer'] | ||
ans2 = json.loads(ans2_js)['answer'] | ||
|
||
category = json.loads(ques_js)['category'] | ||
if category in rule_dict: | ||
rule = rule_dict[category] | ||
else: | ||
rule = rule_dict['default'] | ||
prompt = rule['prompt'] | ||
role = rule['role'] | ||
content = (f'[Question]\n{ques}\n\n' | ||
f'[{role} 1]\n{ans1}\n\n[End of {role} 1]\n\n' | ||
f'[{role} 2]\n{ans2}\n\n[End of {role} 2]\n\n' | ||
f'[System]\n{prompt}\n\n') | ||
js_list.append({ | ||
'id': idx+1, | ||
'question': ques, | ||
'answer1': ans1, | ||
'answer2': ans2, | ||
'category': category}) | ||
idx += 1 | ||
handles.append(get_eval.remote(content, args.max_tokens)) | ||
# To avoid the rate limit set by OpenAI | ||
time.sleep(10) | ||
|
||
reviews = ray.get(handles) | ||
for idx, review in enumerate(reviews): | ||
scores = parse_score(review) | ||
js_list[idx]['content'] = review | ||
js_list[idx]['tuple'] = scores | ||
review_file.write(json.dumps(js_list[idx]) + '\n') | ||
review_file.close() |
Oops, something went wrong.