Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Demo #264

Open
wants to merge 9 commits into
base: main
Choose a base branch
from
Open

Demo #264

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 116 additions & 0 deletions docs/pages/concepts/evaluation_dimension.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
## Overview

Evaluation dimensions are used to evaluate the quality of social interactions.
In original Sotopia paper, there are 7 dimensions to evaluate the quality of social interactions, where we named them as `sotopia` evaluation dimensions:
- believability
- relationship
- knowledge
- secret
- social rules
- financial and material benefits
- goal

The `SotopiaDimensions` can be used directly without initializing the database. It provides a set of predefined evaluation dimensions that are ready to use for evaluating social interactions. For example,

```python
from sotopia.envs.parallel import ParallelSotopiaEnv
from sotopia.envs.evaluators import EvaluationForTwoAgents, ReachGoalLLMEvaluator, RuleBasedTerminatedEvaluator, SotopiaDimensions

env = ParallelSotopiaEnv(
env_profile=env_profile,
model_name=model_names["env"],
action_order="round-robin",
evaluators=[
RuleBasedTerminatedEvaluator(max_turn_number=20, max_stale_turn=2),
],
terminal_evaluators=[
ReachGoalLLMEvaluator(
model_names["env"],
EvaluationForTwoAgents[SotopiaDimensions], # type: ignore
# TODO check how to do type annotation
),
],
)
```


However we observe under many use cases people may want to evaluate with customized evaluation metrics, so we provide a way to build custom evaluation dimensions.
For a quick reference, you can directly check out the `examples/use_custom_dimensions.py`.

### CustomEvaluationDimension
The [`CustomEvaluationDimension`](/python_API/database/evaluation_dimensions) is a class that can be used to create a custom evaluation dimension.
There are four parameters:
- name: the name of the dimension
- description: the description of the dimension
- range_low: the minimum score of the dimension (should be an integer)
- range_high: the maximum score of the dimension (should be an integer)

### CustomEvaluationDimensionList
The [`CustomEvaluationDimensionList`](/python_API/database/evaluation_dimensions) is a class that can be used to create a custom evaluation dimension list based on the existing dimensions. It helps one to group multiple dimensions together for a specific use case.
There are two parameters:
- name: the name of the dimension list
- dimension_pks: the primary keys of the dimensions in the dimension list

### EvaluationDimensionBuilder
The [`EvaluationDimensionBuilder`](/python_API/database/evaluation_dimensions) is a class that can be used to generate a custom evaluation dimension model based on the existing dimensions.


## Usage
### Initialize the database
The default evaluation metric is still `SotopiaDimensions` in `sotopia.env.evaluators`.There is no `CustomEvaluationDimension` in the database by default. To initialize the database, please refer to `examples/use_custom_dimensions.py`.


### Use the custom evaluation dimensions
After you initialize your customized evaluation dimensions, you can choose to use any one of these methods provided below:

#### Method 1: Choose dimensions by names
```python
evaluation_dimensions = (
EvaluationDimensionBuilder.select_existing_dimension_model_by_name(
["transactivity", "verbal_equity"]
)
)
```

#### Method 2: Directly choose the grouped evaluation dimension list
```python
evaluation_dimensions = (
EvaluationDimensionBuilder.select_existing_dimension_model_by_list_name(
"sotopia"
)
)
```

#### Method 3: Build a custom evaluation dimension model temporarily
We provide multiple ways to build a custom evaluation dimension model with `EvaluationDimensionBuilder`, specifically:
- `generate_dimension_model`: build an evaluation dimension from existing dimension primary keys.
- `generate_dimension_model_from_dict`: build an evaluation dimension from a dictionary that specifies the parameters of the `CustomEvaluationDimension`. For example
```json
[
{
"name": "believability",
"description": "The believability of the interaction",
"range_low": 0,
"range_high": 10
},
...
]
```
- `select_existing_dimension_model_by_name`: build an evaluation dimension from existing dimension names. For example `['believability', 'goal']`
- `select_existing_dimension_model_by_list_name`: build an evaluation dimension from existing `CustomEvaluationDimensionList` list names. For example, directly use `sotopia`.


After you get the evaluation dimension model, you can pass it as a parameter for the `Evaluator`, for example,
```python
evaluation_dimensions = (
EvaluationDimensionBuilder.select_existing_dimension_model_by_list_name(
"sotopia"
)
)
terminal_evaluators=[
ReachGoalLLMEvaluator(
model_names["env"],
EvaluationForTwoAgents[evaluation_dimensions], # type: ignore
),
],
```
54 changes: 54 additions & 0 deletions docs/pages/python_API/database/evaluation_dimensions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# `evaluation_dimensions.py`

This module provides classes and utilities for defining and managing custom evaluation dimensions within the Sotopia environment. It includes classes for individual dimensions, lists of dimensions, and a builder for creating dimension models.

## Classes

### `CustomEvaluationDimension`

Represents a custom evaluation dimension with specific attributes such as name, description, and score range.

#### Attributes
- `name`: `str`. The name of the dimension.
- `description`: `str`. A brief description of the dimension.
- `range_low`: `int`. The minimum score for the dimension.
- `range_high`: `int`. The maximum score for the dimension.

### `CustomEvaluationDimensionList`

Groups multiple custom evaluation dimensions together.

#### Attributes
- `name`: `str`. The name of the dimension list.
- `dimension_pks`: `list[str]`. A list of primary keys for the dimensions included in the list.

### `EvaluationDimensionBuilder`

Provides utility methods to create and manage evaluation dimension models.

#### Methods
- `create_range_validator(low: int, high: int)`: Creates a validator for score ranges.

**Arguments:**
- `low`: `int`. The minimum score allowed.
- `high`: `int`. The maximum score allowed.

- `build_dimension_model(dimension_ids: list[str])`: Builds a dimension model from primary keys.

**Arguments:**
- `dimension_ids`: `list[str]`. A list of dimension primary keys.

- `build_dimension_model_from_dict(dimensions: list[dict[str, Union[str, int]]])`: Builds a dimension model from a dictionary.

**Arguments:**
- `dimensions`: `list[dict[str, Union[str, int]]]`. A list of dictionaries specifying dimension attributes.

- `select_existing_dimension_model_by_name(dimension_names: list[str])`: Selects a dimension model by dimension names.

**Arguments:**
- `dimension_names`: `list[str]`. A list of dimension names.

- `select_existing_dimension_model_by_list_name(list_name: str)`: Selects a dimension model by list name.

**Arguments:**
- `list_name`: `str`. The name of the dimension list.
17 changes: 16 additions & 1 deletion examples/experiment_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
EnvAgentComboStorage,
EnvironmentProfile,
EpisodeLog,
EvaluationDimensionBuilder,
)
from sotopia.envs.evaluators import (
EvaluationForTwoAgents,
Expand All @@ -34,6 +35,7 @@
)
from sotopia.server import run_async_server
from sotopia_conf.gin_utils import parse_gin_flags, run
# from sotopia.database import EvaluationDimensionBuilder

_DEFAULT_GIN_SEARCH_PATHS = [
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
Expand Down Expand Up @@ -109,6 +111,18 @@ def _iterate_env_agent_combo_not_in_db(
tag: str | None = None,
) -> Generator[EnvAgentCombo[Observation, AgentAction], None, None]:
"""We iterate over each environment and return the **first** env-agent combo that is not in the database."""
# loading evaluation metric
try:
evaluation_dimensions = EvaluationDimensionBuilder.select_existing_dimension_model_by_list_name(
"sotopia"
) # Initialize your customized dimension, please refer to `examples/use_custom_dimensions.py`
except Exception as e:
print(
"No customized evaluation dimensions found, using default SotopiaDimensions",
e,
)
evaluation_dimensions = SotopiaDimensions

if not env_ids:
env_ids = list(EnvironmentProfile.all_pks())
for env_id in env_ids:
Expand Down Expand Up @@ -152,7 +166,8 @@ def _iterate_env_agent_combo_not_in_db(
terminal_evaluators=[
ReachGoalLLMEvaluator(
model_names["env"],
EvaluationForTwoAgents[SotopiaDimensions],
EvaluationForTwoAgents[evaluation_dimensions], # type: ignore
# TODO check how to do type annotation
),
],
)
Expand Down
2 changes: 2 additions & 0 deletions examples/experimental/nodes/initial_message_node.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ def __init__(
input_tick_channel: str,
output_channels: list[str],
env_scenario: str,
node_name: str,
redis_url: str = "redis://localhost:6379/0",
):
super().__init__(
Expand All @@ -26,6 +27,7 @@ def __init__(
(output_channel, Text) for output_channel in output_channels
],
redis_url=redis_url,
node_name=node_name,
)
self.env_scenario = env_scenario
self.output_channels = output_channels
Expand Down
113 changes: 113 additions & 0 deletions examples/experimental/sotopia_original_replica/llm_agent_sotopia.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
import logging
import sys
from rich.logging import RichHandler

from aact import NodeFactory

from sotopia.experimental.agents.base_agent import BaseAgent
from sotopia.experimental.agents.datamodels import Observation, AgentAction

from sotopia.generation_utils import agenerate
from sotopia.generation_utils.generate import StrOutputParser

# Check Python version
if sys.version_info >= (3, 11):
pass
else:
pass

# Configure logging
FORMAT = "%(asctime)s - %(levelname)s - %(name)s - %(message)s"
logging.basicConfig(
level=logging.WARNING,
format=FORMAT,
datefmt="[%X]",
handlers=[RichHandler()],
)


@NodeFactory.register("llm_agent")
class LLMAgent(BaseAgent[Observation, AgentAction]):
def __init__(
self,
input_channels: list[str],
output_channel: str,
query_interval: int,
agent_name: str,
node_name: str,
goal: str,
model_name: str,
redis_url: str,
):
super().__init__(
[(input_channel, Observation) for input_channel in input_channels],
[(output_channel, AgentAction)],
redis_url,
node_name,
)
self.output_channel = output_channel
self.query_interval = query_interval
self.count_ticks = 0
self.message_history: list[Observation] = []
self.name = agent_name
self.model_name = model_name
self.goal = goal

def _format_message_history(self, message_history: list[Observation]) -> str:
## TODO: akhatua Fix the mapping of action to be gramatically correct
return "\n".join(message.to_natural_language() for message in message_history)

async def aact(self, obs: Observation) -> AgentAction:
if obs.turn_number == -1:
return AgentAction(
agent_name=self.name,
output_channel=self.output_channel,
action_type="none",
argument=self.model_name,
)

self.message_history.append(obs)

if len(obs.available_actions) == 1 and "none" in obs.available_actions:
return AgentAction(
agent_name=self.name,
output_channel=self.output_channel,
action_type="none",
argument="",
)
elif len(obs.available_actions) == 1 and "leave" in obs.available_actions:
self.shutdown_event.set()
return AgentAction(
agent_name=self.name,
output_channel=self.output_channel,
action_type="leave",
argument="",
)
else:
history = self._format_message_history(self.message_history)
action: str = await agenerate(
model_name=self.model_name,
template="Imagine that you are a friend of the other persons. Here is the "
"conversation between you and them.\n"
"You are {agent_name} in the conversation.\n"
"{message_history}\n"
"and you plan to {goal}.\n"
"You can choose to interrupt the other person "
"by saying something or not to interrupt by outputting notiong. What would you say? "
"Please only output a sentence or not outputting anything."
"{format_instructions}",
input_values={
"message_history": history,
"goal": self.goal,
"agent_name": self.name,
},
temperature=0.7,
output_parser=StrOutputParser(),
)

return AgentAction(
agent_name=self.name,
output_channel=self.output_channel,
action_type="speak",
argument=action,
)
Loading
Loading