Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Catch cuda runtime errors #190

Merged
merged 5 commits into from
Aug 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,6 @@ jobs:
script:
- bash ./tests/test_kfserver.sh


deploy:
provider: pypi
username: __token__
Expand Down
81 changes: 44 additions & 37 deletions genienlp/server.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,46 +162,53 @@ def handle_request(self, request):
self.model.add_new_vocab_from_data([task])
batch = self.numericalize_examples(examples)

with torch.no_grad():
if self.args.calibrator_paths is not None:
output = generate_with_model(
self.model,
[batch],
self.numericalizer,
task,
self.args,
output_predictions_only=True,
confidence_estimators=self.confidence_estimators,
)
response = []
if sum(self.args.num_outputs) > 1:
for idx, predictions in enumerate(output.predictions):
candidates = []
for cand in predictions:
candidate = {'answer': cand, 'score': {}}
try:
with torch.no_grad():
if self.args.calibrator_paths is not None:
output = generate_with_model(
self.model,
[batch],
self.numericalizer,
task,
self.args,
output_predictions_only=True,
confidence_estimators=self.confidence_estimators,
)
response = []
if sum(self.args.num_outputs) > 1:
for idx, predictions in enumerate(output.predictions):
candidates = []
for cand in predictions:
candidate = {'answer': cand, 'score': {}}
for e_idx, estimator_scores in enumerate(output.confidence_scores):
candidate['score'][self.estimator_filenames[e_idx]] = float(estimator_scores[idx])
candidates.append(candidate)
response.append({'candidates': candidates})
else:
for idx, p in enumerate(output.predictions):
instance = {'answer': p[0], 'score': {}}
for e_idx, estimator_scores in enumerate(output.confidence_scores):
candidate['score'][self.estimator_filenames[e_idx]] = float(estimator_scores[idx])
candidates.append(candidate)
response.append({'candidates': candidates})
instance['score'][self.estimator_filenames[e_idx]] = float(estimator_scores[idx])
response.append(instance)
else:
for idx, p in enumerate(output.predictions):
instance = {'answer': p[0], 'score': {}}
for e_idx, estimator_scores in enumerate(output.confidence_scores):
instance['score'][self.estimator_filenames[e_idx]] = float(estimator_scores[idx])
response.append(instance)
output = generate_with_model(
self.model, [batch], self.numericalizer, task, self.args, output_predictions_only=True
)
if sum(self.args.num_outputs) > 1:
response = []
for idx, predictions in enumerate(output.predictions):
candidates = []
for cand in predictions:
candidates.append({'answer': cand})
response.append({'candidates': candidates})
else:
response = [{'answer': p[0]} for p in output.predictions]
except RuntimeError as e:
# catch all cuda errors and exit
if 'CUDA error' in str(e):
exit(100)
else:
output = generate_with_model(
self.model, [batch], self.numericalizer, task, self.args, output_predictions_only=True
)
if sum(self.args.num_outputs) > 1:
response = []
for idx, predictions in enumerate(output.predictions):
candidates = []
for cand in predictions:
candidates.append({'answer': cand})
response.append({'candidates': candidates})
else:
response = [{'answer': p[0]} for p in output.predictions]
raise e

return response

Expand Down
40 changes: 40 additions & 0 deletions tests/test_cuda.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
#!/usr/bin/env bash

. ./tests/lib.sh

i=0
# test kfserver
for hparams in \
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random" ;
do

# train
genienlp train --train_tasks almond --train_batch_tokens 100 --val_batch_size 100 --train_iterations 2 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $EMBEDDING_DIR --no_commit

# generate a long sequence
long_sequence=''
set +x
for j in {1..2000};
do
long_sequence="${long_sequence} XXX"
done
set -x

# test cuda errors
input="{\"id\": \"test\", \"context\": \"${long_sequence}\", \"question\": \"translate to thingtalk\", \"answer\": \"YYY\"}"
set +e
echo ${input} | genienlp server --path $workdir/model_$i --stdin
exit_code=$?
set -e

if [ $exit_code != 100 ] ; then
echo "Cuda error not caught!"
exit 1
fi

rm -rf $workdir/model_$i
i=$((i+1))
done

rm -fr $workdir
rm -rf $SRCDIR/torch-shm-file-*