Skip to content

stat-ml/NUQ

Repository files navigation

NUQ Uncertainty

This repository implements an uncertainty estimation kernel method based on Nadaraya-Watson kernel regression (see NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural Networks by N. Kotelevskii et al.)

Environment

Important: we recommend having Jupyter Lab installed in the base conda environment. For the best experience, you may also install nb_conda_kernels and ipywidgets.

  1. Create conda environment:
    $ conda env create --file environment.yaml
  2. Activate it:
    $ conda activate ray-env

How to use

See classification and regression examples for more details.

Classification

from nuq import NuqClassifier

nuq = NuqClassifier()
nuq.fit(X_train, y_train)
preds, log_uncs = nuq.predict(X_test, return_uncertainty="epistemic")

Regression

from nuq import NuqRegressor

nuq = NuqRegressor()
nuq.fit(X_train, y_train)
preds, log_uncs = nuq.predict(X_test, return_uncertainty="epistemic")

Installation

(temporary local only) Pip doesn't handle .toml files correctly, thus using setup.py:

python setup.py develop

To uninstall:

pip uninstall nuq

Development

  1. Install pre-commit (config provided in this repo)
    $ pre-commit install
  2. (optional) Run against all the files to check the consistency
    $ pre-commit run --all-files
  3. You may also run black and isort to keep the files style-compliant
    $ isort .; black .
  4. Proposed linter is flake8
    $ flake8 .
  5. One can run tests via pytest
    $ pytest