Skip to content

Commit

Permalink
Release 0.17.2 on CRAN
Browse files Browse the repository at this point in the history
  • Loading branch information
strengejacke committed Nov 15, 2018
1 parent 736fddc commit c3c37f3
Show file tree
Hide file tree
Showing 81 changed files with 1,375 additions and 862 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@ Package: sjstats
Type: Package
Encoding: UTF-8
Title: Collection of Convenient Functions for Common Statistical Computations
Version: 0.17.1.9000
Date: 2018-10-05
Version: 0.17.2
Date: 2018-11-15
Authors@R: person("Daniel", "Lüdecke", role = c("aut", "cre"), email = "d.luedecke@uke.de", comment = c(ORCID = "0000-0002-8895-3206"))
Maintainer: Daniel Lüdecke <d.luedecke@uke.de>
Description: Collection of convenient functions for common statistical computations,
Expand Down
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ S3method(icc,brmsfit)
S3method(icc,glmmTMB)
S3method(icc,merMod)
S3method(icc,stanreg)
S3method(is_singular,glmmTMB)
S3method(is_singular,merMod)
S3method(mcse,brmsfit)
S3method(mcse,stanmvreg)
S3method(mcse,stanreg)
Expand Down Expand Up @@ -80,6 +82,7 @@ S3method(print,sj_pval)
S3method(print,sj_r2)
S3method(print,sj_resample)
S3method(print,sj_revar)
S3method(print,sj_revar_adjust)
S3method(print,sj_rope)
S3method(print,sj_se_icc)
S3method(print,sj_splithalf)
Expand Down
30 changes: 28 additions & 2 deletions R/S3-methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@ print.sj_r2 <- function(x, digits = 3, ...) {
#' @importFrom purrr map_chr map2_chr
#' @export
print.sj_icc <- function(x, digits = 4, ...) {
cat("\nIntra-Class Correlation Coefficient for Generalized Linear Mixed Model\n\n")
cat("\nIntraclass Correlation Coefficient for Generalized Linear Mixed Model\n\n")
print_icc_and_r2(x, digits, ...)
}

Expand Down Expand Up @@ -216,7 +216,7 @@ print_icc_and_r2 <- function(x, digits, ...) {
#' @export
print.sj_icc_merMod <- function(x, comp, ...) {
# print model information
cat(sprintf("\n%s\n\n", attr(x, "model", exact = T)))
cat(sprintf("\nIntraclass Correlation Coefficient for %s\n\n", attr(x, "model", exact = T)))

cat(crayon::blue(
sprintf("Family : %s (%s)\nFormula: %s\n\n",
Expand Down Expand Up @@ -287,6 +287,8 @@ print.sj_icc_merMod <- function(x, comp, ...) {
as.vector(x[i])))
}
}

cat("\n")
}


Expand Down Expand Up @@ -1424,6 +1426,30 @@ print.sj_grpmeans <- function(x, ...) {
}


#' @importFrom crayon blue cyan
#' @export
print.sj_revar_adjust <- function(x, ...) {
cat("\nVariance Components of Mixed Models\n\n")
cat(crayon::blue(sprintf("Family : %s (%s)\nFormula: %s\n\n", x$family, x$link, deparse(x$formula))))

vals <- c(
sprintf("%.3f", x$var.fixef),
sprintf("%.3f", x$var.ranef),
sprintf("%.3f", x$var.disp),
sprintf("%.3f", x$var.dist),
sprintf("%.3f", x$var.resid)
)

vals <- format(vals, justify = "right")

cat(sprintf(" fixed: %s\n", vals[1]))
cat(sprintf(" random: %s\n", vals[2]))
cat(sprintf(" residual: %s\n", vals[5]))
cat(crayon::cyan(sprintf(" dispersion: %s\n", vals[3])))
cat(crayon::cyan(sprintf(" distribution: %s\n\n", vals[4])))
}


#' @export
print.sj_revar <- function(x, ...) {
# get parameters
Expand Down
73 changes: 46 additions & 27 deletions R/converge_ok.R
Original file line number Diff line number Diff line change
Expand Up @@ -12,23 +12,40 @@
#' @param tolerance Indicates up to which value the convergence result is
#' accepted. The smaller \code{tolerance} is, the stricter the test
#' will be.
#' @param ... Currently not used.
#'
#' @return For \code{converge_ok()}, a logical vector, which is \code{TRUE} if
#' convergence is fine and \code{FALSE} if convergence is suspicious.
#' Additionally, the convergence value is returned as return value's name.
#' \code{is_singluar()} returns \code{TRUE} if the model fit is singular.
#'
#' @details \code{converge_ok()} provides an alternative convergence test for
#' \code{\link[lme4]{merMod}}-objects, as discussed
#' \href{https://github.com/lme4/lme4/issues/120}{here}
#' and suggested by Ben Bolker in
#' \href{https://github.com/lme4/lme4/issues/120#issuecomment-39920269}{this comment}.
#' \cr \cr
#' \code{is_singular()} checks if a model fit is singular, and can
#' be used in case of post-fitting convergence warnings, such as
#' warnings about negative eigenvalues of the Hessian. If the fit
#' is singular (i.e. \code{is_singular()} returns \code{TRUE}), these
#' warnings can most likely be ignored.
#' \code{\link[lme4]{merMod}}-objects, as discussed
#' \href{https://github.com/lme4/lme4/issues/120}{here}
#' and suggested by Ben Bolker in
#' \href{https://github.com/lme4/lme4/issues/120#issuecomment-39920269}{this comment}.
#' \cr \cr
#' If a model is "singular", this means that some dimensions of the variance-covariance
#' matrix have been estimated as exactly zero. \code{is_singular()} checks if
#' a model fit is singular, and can be used in case of post-fitting convergence
#' warnings, such as warnings about negative eigenvalues of the Hessian. If the fit
#' is singular (i.e. \code{is_singular()} returns \code{TRUE}), these warnings
#' can most likely be ignored.
#' \cr \cr
#' There is no gold-standard about how to deal with singularity and which
#' random-effects specification to choose. Beside using fully Bayesian methods
#' (with informative priors), proposals in a frequentist framework are:
#' \itemize{
#' \item avoid fitting overly complex models, such that the variance-covariance matrices can be estimated precisely enough (\cite{Matuschek et al. 2017})
#' \item use some form of model selection to choose a model that balances predictive accuracy and overfitting/type I error (\cite{Bates et al. 2015}, \cite{Matuschek et al. 2017})
#' \item \dQuote{keep it maximal}, i.e. fit the most complex model consistent with the experimental design, removing only terms required to allow a non-singular fit (\cite{Barr et al. 2013})
#' }
#'
#' @references \itemize{
#' \item Bates D, Kliegl R, Vasishth S, Baayen H. Parsimonious Mixed Models. arXiv:1506.04967, June 2015.
#' \item Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3):255–278, April 2013.
#' \item Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D. Balancing type I error and power in linear mixed models. Journal of Memory and Language, 94:305–315, 2017.
#' }
#'
#' @examples
#' library(sjmisc)
Expand Down Expand Up @@ -74,23 +91,25 @@ converge_ok <- function(x, tolerance = 0.001) {
}


#' @importFrom lme4 getME
#' @importFrom glmmTMB getME
#' @rdname converge_ok
#' @export
is_singular <- function(x, tolerance = 1e-5) {
if (is_merMod(x)) {
theta <- lme4::getME(x, "theta")
# diagonal elements are identifiable because they are fitted
# with a lower bound of zero ...
diag.element <- lme4::getME(x, "lower") == 0
any(abs(theta[diag.element]) < tolerance)
} else if (inherits(x, "glmmTMB")) {
theta <- glmmTMB::getME(x, "theta")
# diagonal elements are identifiable because they are fitted
# with a lower bound of zero ...
diag.element <- glmmTMB::getME(x, "lower") == 0
any(abs(theta[diag.element]) < tolerance)
} else
warning("`x` must be a merMod- or glmmTMB-object.", call. = F)
is_singular <- function(x, tolerance = 1e-5, ...) {
UseMethod("is_singular")
}

#' @importFrom lme4 getME
#' @export
is_singular.merMod <- function(x, tolerance = 1e-5, ...) {
theta <- lme4::getME(x, "theta")
# diagonal elements are identifiable because they are fitted
# with a lower bound of zero ...
diag.element <- lme4::getME(x, "lower") == 0
any(abs(theta[diag.element]) < tolerance)
}

#' @importFrom lme4 VarCorr
#' @export
is_singular.glmmTMB <- function(x, tolerance = 1e-5, ...) {
vc <- collapse_cond(lme4::VarCorr(x))
any(sapply(vc, function(.x) any(abs(diag(.x)) < tolerance)))
}
79 changes: 59 additions & 20 deletions R/icc.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,9 @@
#' @param ppd Logical, if \code{TRUE}, variance decomposition is based on the
#' posterior predictive distribution, which is the correct way for Bayesian
#' non-Gaussian models.
#' @param adjusted Logical, if \code{TRUE}, the adjusted (and conditional) ICC
#' is calculated, which reflects the uncertainty of all random effects (see
#' 'Details'). \strong{Note} that if \code{adjusted = TRUE}, \strong{no}
#' additional information on the variance components is returned.
#'
#' @param adjusted Logical, if \code{TRUE}, the adjusted (and
#' conditional) ICC is calculated, which reflects the uncertainty of all
#' random effects (see 'Details').
#'
#' @inheritParams hdi
#'
Expand Down Expand Up @@ -103,7 +101,7 @@
#' To get a meaningful ICC also for models with random slopes, use \code{adjusted = TRUE}.
#' The adjusted ICC used the mean random effect variance, which is based
#' on the random effect variances for each value of the random slope
#' (see \cite{Johnson 2014}).
#' (see \cite{Johnson et al. 2014}).
#' \cr \cr
#' \strong{ICC for models with multiple or nested random effects}
#' \cr \cr
Expand Down Expand Up @@ -759,15 +757,23 @@ icc.brmsfit <- function(x, re.form = NULL, typical = "mean", prob = .89, ppd = F
#' objects are supported.
#'
#' @param x Fitted mixed effects model (of class \code{merMod}, \code{glmmTMB},
#' \code{stanreg} or \code{brmsfit}). \code{get_re_var()} also accepts
#' an object of class \code{icc.lme4}, as returned by the
#' \code{\link{icc}} function.
#' \code{stanreg} or \code{brmsfit}). \code{get_re_var()} also accepts
#' an object of class \code{icc.lme4}, as returned by the
#' \code{\link{icc}} function.
#' @param comp Name of the variance component to be returned. See 'Details'.
#' @param adjusted Logical, if \code{TRUE}, returns the variance of the fixed
#' and random effects as well as of the additive dispersion and
#' distribution-specific variance, which are used to calculate the
#' adjusted and conditional \code{\link{r2}} and \code{\link{icc}}.
#'
#' @return \code{get_re_var()} returns the value of the requested variance component,
#' \code{re_var()} returns all random effects variances.
#'
#' @references Aguinis H, Gottfredson RK, Culpepper SA. 2013. Best-Practice Recommendations for Estimating Cross-Level Interaction Effects Using Multilevel Modeling. Journal of Management 39(6): 1490–1528 (\doi{10.1177/0149206313478188})
#' @references \itemize{
#' \item Aguinis H, Gottfredson RK, Culpepper SA. 2013. Best-Practice Recommendations for Estimating Cross-Level Interaction Effects Using Multilevel Modeling. Journal of Management 39(6): 1490–1528 (\doi{10.1177/0149206313478188})
#' \item Johnson PC, O'Hara RB. 2014. Extension of Nakagawa & Schielzeth's R2GLMM to random slopes models. Methods Ecol Evol, 5: 944-946. (\doi{10.1111/2041-210X.12225})
#' \item Nakagawa S, Johnson P, Schielzeth H (2017) The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisted and expanded. J. R. Soc. Interface 14. \doi{10.1098/rsif.2017.0213}
#' }
#'
#' @details The random effect variances indicate the between- and within-group
#' variances as well as random-slope variance and random-slope-intercept
Expand All @@ -785,6 +791,18 @@ icc.brmsfit <- function(x, re.form = NULL, typical = "mean", prob = .89, ppd = F
#' direct effects) affect the between-group-variance. Cross-level
#' interaction effects are group-level factors that explain the
#' variance in random slopes (Aguinis et al. 2013).
#' \cr \cr
#' If \code{adjusted = TRUE}, the variance of the fixed and random
#' effects as well as of the additive dispersion and
#' distribution-specific variance are returned (see \cite{Johnson et al. 2014}
#' and \cite{Nakagawa et al. 2017}):
#' \describe{
#' \item{\code{"fixed"}}{variance attributable to the fixed effects}
#' \item{\code{"random"}}{variance of random effects}
#' \item{\code{"dispersion"}}{variance due to additive dispersion}
#' \item{\code{"distribution"}}{distribution-specific variance}
#' \item{\code{"residual"}}{sum of dispersion and distribution}
#' }
#'
#' @seealso \code{\link{icc}}
#'
Expand All @@ -794,6 +812,7 @@ icc.brmsfit <- function(x, re.form = NULL, typical = "mean", prob = .89, ppd = F
#'
#' # all random effect variance components
#' re_var(fit1)
#' re_var(fit1, adjusted = TRUE)
#'
#' # just the rand. slope-intercept covariance
#' get_re_var(fit1, "tau.01")
Expand All @@ -806,20 +825,40 @@ icc.brmsfit <- function(x, re.form = NULL, typical = "mean", prob = .89, ppd = F
#' @importFrom purrr map map2 flatten_dbl flatten_chr
#' @importFrom sjmisc trim
#' @export
re_var <- function(x) {
# iterate all attributes and return them as vector
rv <- c("sigma_2", "tau.00", "tau.11", "tau.01", "rho.01")
re_var <- function(x, adjusted = FALSE) {

# compute icc
icc_ <- suppressMessages(icc(x))
if (adjusted) {

rv_ <- purrr::map(rv, ~ attr(icc_, .x, exact = TRUE))
rn <- purrr::map2(1:length(rv_), rv, ~ sjmisc::trim(paste(names(rv_[[.x]]), .y, sep = "_")))
rv_ <- purrr::flatten_dbl(rv_)
rv <- r2(x)

names(rv_) <- purrr::flatten_chr(rn)[1:length(rv_)]
rv_ <- list(
var.fixef = attr(rv, "var.fixef", exact = TRUE),
var.ranef = attr(rv, "var.ranef", exact = TRUE),
var.disp = attr(rv, "var.disp", exact = TRUE),
var.dist = attr(rv, "var.dist", exact = TRUE),
var.resid = attr(rv, "var.resid", exact = TRUE),
formula = attr(rv, "formula", exact = TRUE),
family = attr(rv, "family", exact = TRUE),
link = attr(rv, "link", exact = TRUE)
)

class(rv_) <- c("sj_revar_adjust", class(rv_))

} else {
# iterate all attributes and return them as vector
rv <- c("sigma_2", "tau.00", "tau.11", "tau.01", "rho.01")

class(rv_) <- c("sj_revar", class(rv_))
# compute icc
icc_ <- suppressMessages(icc(x))

rv_ <- purrr::map(rv, ~ attr(icc_, .x, exact = TRUE))
rn <- purrr::map2(1:length(rv_), rv, ~ sjmisc::trim(paste(names(rv_[[.x]]), .y, sep = "_")))
rv_ <- purrr::flatten_dbl(rv_)

names(rv_) <- purrr::flatten_chr(rn)[1:length(rv_)]

class(rv_) <- c("sj_revar", class(rv_))
}

rv_
}
Expand Down
2 changes: 1 addition & 1 deletion R/pred_vars.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
#'
#' @description Several functions to retrieve information from model objects,
#' like variable names, link-inverse function, model frame,
#' model_family etc., in a tidy and consistent way.
#' model family etc., in a tidy and consistent way.
#'
#' @param x A fitted model; for \code{var_names()}, \code{x} may also be a
#' character vector.
Expand Down
Loading

0 comments on commit c3c37f3

Please sign in to comment.