-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b7f914e
commit 0c0c3a0
Showing
10 changed files
with
141 additions
and
89 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
import numpy as np | ||
from .idw.idw import IDW | ||
from .utils.distance import haversine, euclidean | ||
|
||
|
||
class SpatialFeatures: | ||
"""Generate spatial features from N-closest locations | ||
Args: | ||
n_closest : 'N' closest locations | ||
idw : To use idw output as one of the feature | ||
idw_exponent : Exponent to be used in idw (if idw is False, ignore) | ||
coordinate_type : 'Eucleadian' or 'Geographic' (if idw is False, ignore) | ||
resolution : 'low', 'standard' or 'high' (if idw is False, ignore) | ||
""" | ||
|
||
def __init__(self, n_closest: int = 5, idw: bool = True, idw_exponent: float = 2, | ||
coordinate_type: str = 'Euclidean', resolution: str = 'standard') -> None: | ||
|
||
self.n_closest = n_closest | ||
self.idw = idw | ||
self.idw_exponent = idw_exponent | ||
self.coordinate_type = coordinate_type | ||
self.resolution = resolution | ||
if self.coordinate_type == 'Eucledian': | ||
self.distance = euclidean | ||
elif self.coordinate_type == 'Geographic': | ||
self.distance = haversine | ||
else: | ||
raise NotImplementedError( | ||
'"'+self.coordinate_type+'" is not implemented yet or invalid') | ||
|
||
def fit(self, X: np.ndarray, y: np.ndarray) -> object: | ||
"""[summary] | ||
Args: | ||
X : Reference X data (longitude, latitude, time, ...) | ||
y : Reference y data | ||
Returns: | ||
self | ||
""" | ||
self.X = X | ||
self.y = y | ||
|
||
def transform(self, X: np.ndarray) -> np.ndarray: | ||
"""Transform features | ||
Args: | ||
X (np.ndarray): (longitude, latitude, time, ...) | ||
Raises: | ||
Exception: If not already fitted | ||
Returns: | ||
np.ndarray: Transformed features | ||
""" | ||
try: | ||
self.X | ||
except AttributeError: | ||
raise Exception("Not fitted yet. first call the 'fit' method") | ||
|
||
Xflag = False | ||
if np.all(X == self.X): | ||
Xflag = True | ||
|
||
F = np.empty((X.shape[0], (X.shape[1] - 3) + | ||
self.n_closest*2 + self.idw)) * np.nan | ||
for t in np.unique(X[:, 2]): # Iterating over time | ||
mask = X[:, 2] == t # rows with time t | ||
trn_mask = self.X[:, 2] == t | ||
X_local = X[mask] | ||
self_X_local = self.X[trn_mask] | ||
|
||
lonlat = X_local[:, :2] # locs | ||
self_lonlat = self_X_local[:, :2] # Reference locs | ||
dst = self.distance(lonlat, self_lonlat) | ||
if Xflag: | ||
idx = dst.argsort()[:, 1:self.n_closest+1] | ||
else: | ||
idx = dst.argsort()[:, :self.n_closest] | ||
|
||
# Feature set 1: closest distances | ||
f1 = dst[np.arange(lonlat.shape[0])[:, None], idx] | ||
|
||
self_y_local = self.y[trn_mask] # Train obs | ||
ymat = self_y_local[:, None].repeat(lonlat.shape[0], 1).T | ||
# Feature set 2: closest observations | ||
f2 = ymat[np.arange(lonlat.shape[0])[:, None], idx] | ||
|
||
if self.idw: | ||
def for_each_row(i): | ||
i = i[0] | ||
model = IDW(exponent=self.idw_exponent) | ||
model.resolution = self.resolution | ||
model.coordinate_type = self.coordinate_type | ||
model.fit(self_lonlat[idx[i]], self_y_local[idx[i]]) | ||
return model.predict(lonlat[i][None, :]) | ||
|
||
# Feature set 3: IDW observation | ||
f3 = np.apply_along_axis( | ||
for_each_row, axis=1, arr=np.arange(lonlat.shape[0]).reshape(-1, 1)) | ||
F[mask] = np.concatenate([X_local[:, 3:], f1, f2, f3], axis=1) | ||
else: | ||
F[mask] = np.concatenate([X_local[:, 3:], f1, f2], axis=1) | ||
|
||
return F | ||
|
||
def fit_transform(self, X: np.ndarray, y: np.ndarray): | ||
self.fit(X, y) | ||
return self.transform(X) |
Empty file.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters