Skip to content

sziraqui/poor-man-s-rekognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Poor Man's Rekognition (POC for GSoC'19)

A free and open source alternative to Amazon Rekognition
This branch uses face-api.js, with light weight tfjs implementations Facenet. I have demonstrated Video Annotation feature and a REST API for PMR


Check out LIVE demo

Implemented features

  • Face detection (via face-api.js)
  • Face recognition (via face-api.js)
  • Video annotation (opencv4nodejs and face-api.js)

Implemented APIs

  • DetectFaces
  • CompareFaces

Setup

  • Ubuntu 18.04, Nodejs 10.x
  • Install OpenCV 3.x required packages
  • git clone https://github.com/sziraqui/poor-man-s-rekognition.git pmr
  • cd pmr
  • $ npm install
  • Start server on any port (default 3000): $ npm start

Run video annotation example

  • Ensure you have ts-node installed npm i -g ts-node-dev

  • Now run the example on sample input:
    ts-node manual-tests/video-recog.ts -r samples/karan_johar.jpg samples/Tiger-Shroff-3.jpg samples/tara-sutaria.jpg samples/ananya_pandey.jpg -n karan tiger tara ananya -t samples/kofee-with-karan-trim.mp4 -s 80 -d 0.9 -v true

    IMAGE ALT Video Annotation


REST API Reference

Request header
"Content-Type": "application/json"
All request/response formats are same as Amazon Rekognition formats

1. DetectFaces

A. Using GET
GET /api/face-detection/from-url?imageUrl=http://example.com/image.jpg
Response format

    {
        "FaceDetails": [ 
            { 
                "BoundingBox": { 
                    "Height": number,
                    "Left": number,
                    "Top": number,
                    "Width": number
                },
                "Confidence": number
            }
        ],
        "OrientationCorrection": "string"
    }

Note: The BoundingBox values are in ratios just like Amazon Rekognition BoundingBox type

The top and left values returned are ratios of the overall image size. For example, if the input image is 700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API returns a left value of 0.5 (350/700) and a top value of 0.25 (50/200).

B. Using POST
POST /api/face-detection/from-blob
Request body format

    {
        "Image": { 
            "Bytes": `Image as base64 DataUrl string`,
        }
    }

Response format
Same as GET

2. CompareFaces

A. Using GET
GET /api/compare-faces/from-url?sourceImage=http://example.com/image1.jpg&targetImage=http://example.com/image2.jpg&similarityThreshold=60

Response format

    {
        "FaceMatches": [ 
            { 
                "Face": { 
                    "BoundingBox": { 
                    "Height": number,
                    "Left": number,
                    "Top": number,
                    "Width": number
                    },
                    "Confidence": number,
                },
                "Similarity": number
            }
        ],
        "SourceImageFace": { 
            "BoundingBox": { 
                "Height": number,
                "Left": number,
                "Top": number,
                "Width": number
            },
            "Confidence": number
        },
        "SourceImageOrientationCorrection": "string",
        "TargetImageOrientationCorrection": "string",
        "UnmatchedFaces": [ 
            { 
                "BoundingBox": { 
                    "Height": number,
                    "Left": number,
                    "Top": number,
                    "Width": number
                },
                "Confidence": number
            }
        ]
    }    

B. Using POST
POST /api/compare-faces/from-blob
Request body

    {
        "SimilarityThreshold": number,
        "SourceImage": { 
            "Bytes": blob
        },
        "TargetImage": { 
            "Bytes": blob
        }
    }

Main libraries used

GSoC

This project is my Proof of Concept for CCExtractor's 'Poor Man's Rekognition' problem statement. Code reviews will be highly appreciated.

License

Licensed under GPL-3.0