CHEME 375 covers Excel, Python, and ASPEN skills needed for chemical engineering applications. Applied scientific computing and numerical methods are covered. Taken in Sp21 with Professor Jim Pfaendtner.
Topic | ChemE Applications | Python Skills | Jupyter Notebook |
Online |
---|---|---|---|---|
Curve fitting | Fitting experimental data to functional forms (e.g. Clausius-Clapeyron equation) | scipy.optimize.curve_fit() scipy.optimize.minimize() |
ipynb | html |
Solving linear systems | Balancing chemical equations | scipy.linalg.inv() scipy.linalg.solve() |
ipynb | html |
Solving nonlinear systems | Solving binary vapor liquid equilibrium (VLE) problems | scipy.optimize.fsolve() |
ipynb | html |
Topic | ChemE Applications | Python Skills | Jupyter Notebook |
Online |
---|---|---|---|---|
Solving systems of ODEs | Chemical kinetics of one reaction and reaction networks | Euler's method scipy.integrate.solve_ivp() |
ipynb | html |
Solving time-independent PDEs | Time-independent 2D heat transfer of thin metal slab | scipy.linalg.solve() |
ipynb | html |
Solving time-dependent PDEs | Time-dependent 1D heat transfer of thin rod | Finite difference method | ipynb | html |
ChemE Applications | Python Skills | Jupyter Notebook |
Online |
---|---|---|---|
Solving recycle streams | scipy.linalg.solve() |
ipynb | html |
Constructing VLE diagram using Raoult's law | scipy.optimize.fsolve() |
ipynb | html |
Determining equilibrium compositions using equation of state (EOS) methods | numpy.polynomial .polynomial.polyroots() |
ipynb | html |
Constructing VLE diagram using equation of state (EOS) methods | numpy.polynomial .polynomial.polyroots() |
ipynb | html |
Determining Antoine's coefficients | scipy.optimize.fsolve() |
ipynb | html |