-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* lint fixed * lint fix * removed binary file * files for example data are restored * removed some file * renamed filter_component * some fixes * some fixes * some lint fixes * some lint fixes * fixed some comments * fixed some formating
- Loading branch information
1 parent
4f728ab
commit 8a276a7
Showing
7 changed files
with
788 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
label,col1 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Filters the data from input data by using the filter function.""" | ||
|
||
|
||
def filter_function(x_list): | ||
"""Filters the data from input data by using the filter function. | ||
Args: | ||
x_list: Input list of data to be filtered. | ||
Returns: | ||
filtered list | ||
""" | ||
new_list = [] | ||
for element in x_list: | ||
if element['label'] == [0]: | ||
new_list.append(element) | ||
return new_list |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
""" | ||
the component for filter addon | ||
""" | ||
|
||
import importlib | ||
import os | ||
|
||
import tensorflow as tf | ||
from tfx.dsl.component.experimental.annotations import OutputDict | ||
from tfx.dsl.io.fileio import listdir | ||
from tfx.types import standard_artifacts | ||
from tfx.v1.dsl.components import InputArtifact, Parameter | ||
from tfx_bsl.coders import example_coder | ||
|
||
|
||
def _get_data_from_tfrecords(train_uri: str): | ||
''' | ||
Reads and returns data from TFRecords at URI as a list | ||
of dictionaries with values as numpy arrays | ||
Example: | ||
_get_data_from_tfrecords('path_to_TFRecords') | ||
''' | ||
train_uri = [ | ||
os.path.join(train_uri, file_path) for file_path in listdir(train_uri) | ||
] | ||
raw_dataset = tf.data.TFRecordDataset(train_uri, compression_type='GZIP') | ||
|
||
np_dataset = [] | ||
for tfrecord in raw_dataset: | ||
serialized_example = tfrecord.numpy() | ||
example = example_coder.ExampleToNumpyDict(serialized_example) | ||
np_dataset.append(example) | ||
|
||
return np_dataset | ||
|
||
|
||
def filter_component(input_data: InputArtifact[standard_artifacts.Examples], | ||
filter_function_str: Parameter[str], | ||
output_file: Parameter[str]) -> OutputDict(list_len=int): | ||
"""Filters the data from input data by using the filter function. | ||
Args: | ||
input_data: Input list of data to be filtered. | ||
output_file: the name of the file to be saved to. | ||
filter_function_str: Module name of the function that will be used to | ||
filter the data. | ||
Example for the function | ||
my_example/my_filter.py: | ||
# filter module must have filter_function implemented | ||
def filter_function(input_list: Array): | ||
output_list = [] | ||
for element in input_list: | ||
if element.something: | ||
output_list.append(element) | ||
return output_list | ||
pipeline.py: | ||
filter_component(input_data ,'my_example.my_filter',output_data) | ||
Returns: | ||
len of the list after the filter | ||
{ | ||
'list_len': len(output_list) | ||
} | ||
""" | ||
records = _get_data_from_tfrecords(input_data.uri + "/Split-train") | ||
filter_function = importlib.import_module( | ||
filter_function_str).filter_function | ||
filtered_data = filter_function(records) | ||
result_len = len(filtered_data) | ||
new_data = [] | ||
for key in list(filtered_data[0].keys()): | ||
local_list = [] | ||
for i in range(result_len): | ||
local_list.append(str(filtered_data[i][key][0])) | ||
new_data.append(str(local_list)) | ||
writer = tf.io.TFRecordWriter(output_file) | ||
writer.write(tf.data.Dataset.from_tensor_slices(new_data).map(lambda x: x)) | ||
|
||
return {'list_len': result_len} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Component test for the filter component.""" | ||
|
||
import os | ||
|
||
import tensorflow as tf | ||
from absl.testing import absltest | ||
from tfx.types import artifact_utils, standard_artifacts | ||
|
||
from tfx_addons.example_filter.component import filter_component | ||
|
||
|
||
class ComponentTest(absltest.TestCase): | ||
def testConstructWithOptions(self): | ||
source_data_dir = os.path.join(os.path.dirname(__file__), 'data') | ||
|
||
examples = standard_artifacts.Examples() | ||
examples.uri = os.path.join(source_data_dir, "example_gen") | ||
examples.split_names = artifact_utils.encode_split_names(['train', 'eval']) | ||
|
||
params = { | ||
"input_data": examples, | ||
"filter_function_str": 'filter_function', | ||
"output_file": 'output', | ||
} | ||
filter_component(**params) | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.test.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
label,col1 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
,2 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
1,1 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 | ||
0,0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Example function to demonstrate the filter functionality of the module.""" | ||
|
||
|
||
def filter_function(x_list): | ||
"""Filters the data from input data by using the filter function. | ||
Args: | ||
x_list: Input list of data to be filtered. | ||
Returns: | ||
filtered list | ||
""" | ||
new_list = [] | ||
for element in x_list: | ||
if element['label'] == [0]: | ||
new_list.append(element) | ||
return new_list |