Skip to content

TensorLayer 2.0.0

Compare
Choose a tag to compare
@zsdonghao zsdonghao released this 04 May 17:48
0894eda

Dear all,

It is our great honour to release TensorLayer 2.0.0.
In the past few months, we have refactored all layers to support TensorFlow 2.0.0-alpha0 and the dynamic mode! The new API designs allow you to customize layers easily, compared with other libraries.

We would like to thanks all contributors especially our core members from Peking University and Imperial College London, they are @zsdonghao @JingqingZ @ChrisWu1997 @warshallrho. All contributions are listed in the following.

In the next step, we are interested in supporting more advanced features for 3D Vision, such as PointCNN and GraphCNN. Also, we still have some remaining examples that need to be updated, such as A3C and distributed training. If you are interested in joining the development team, feel free to contact us: tensorlayer@gmail.com

Enjoy coding!

TensorLayer Team

References

Contribution List

All contribution can be found as follows:

Layers

tl.models

Examples

  • basic_tutorials
    Too many basic tutorials, some codes can be removed.
  • data_process
  • database
    • refactored
    • tested
  • distributed_training
    • tutorial_cifar10_distributed_trainer.py
      • refactored
      • tested
    • tutorial_mnist_distributed_trainer.py
      • refactored
      • tested
  • keras_tfslim
  • pretrained_cnn
  • quantized_net
    • tutorial_binarynet_cifar10_tfrecord.py
      • refactored
      • tested
    • tutorial_binarynet_mnist_cnn.py
      • refactored
      • tested
    • tutorial_dorefanet_cifar10_tfrecord.py
      • refactored
      • tested
    • tutorial_dorefanet_mnist_cnn.py
      • refactored
      • tested
    • tutorial_quanconv_cifar10.py
      • refactored
      • tested
    • tutorial_quanconv_mnist.py
      • refactored
      • tested
    • tutorial_ternaryweight_cifar10_tfrecord.py
      • refactored
      • tested
    • tutorial_ternaryweight_mnist_cnn.py
      • refactored
      • tested
  • reinforcement_learning
    • tutorial_atari_pong.py @zsdonghao 2019/01/21
      • refactored
      • tested
    • tutorial_bipedalwalker_a3c_continuous_action.py
      • refactored
      • tested
    • tutorial_cartpole_ac.py @zsdonghao 2019/02/17
      • refactored
      • tested
    • tutorial_frozenlake_dqn.py @zsdonghao 2019/02/16
      • refactored
      • tested
    • tutorial_frozenlake_q_table.py @zsdonghao 2019/02/16
      • refactored
      • tested
  • text_classification
    • tutorial_imdb_fasttext.py @JingqingZ 2019/03/14
      • refactored
      • tested
  • text_generation
    • tutorial_generate_text.py
      • refactored
      • tested
  • text_ptb
    Are they duplicated?
    • tutorial_ptb_lstm_state_is_tuple.py
      • refactored
      • tested
    • tutorial_ptb_lstm.py
      • refactored
      • tested
  • text_word_embedding
    • tutorial_word2vec_basic.py @JingqingZ 2019/02/21 2019/03/19
      • refactored
      • tested

Others

Unittests Status:

Unittests Status (Pending):

Some testing codes can be removed.

  • test_array_ops.py
  • test_decorators.py
  • test_documentation.py
  • test_layers_basic.py
  • test_layers_flow_control.py removed in favour of eager mode @zsdonghao 2018/12/04 (🀄️remember to change CN docs)
  • test_layers_importer.py
  • test_layers_normalization.py
  • test_layers_padding.py
  • test_layers_spatial_transformer.py
  • test_layers_stack.py
  • test_layers_super_resolution.py
  • test_layers_time_distributed.py
  • test_logging.py
  • test_logging_hyperdash.py
  • test_mnist_simple.py
  • test_model_compilednetwork.py
  • test_models.py
  • test_network_custom_2d.py
  • test_network_custom_input_layers.py
  • test_network_custom_multiple_inputs.py
  • test_network_custom_multiple_outputs.py
  • test_network_sequential_1d.py
  • test_network_sequential_2d.py
  • test_network_sequential_3d.py
  • test_network_sequential_rnn.py
  • test_optimizer_amsgrad.py
  • test_pydocstyle.py
  • test_reuse_mlp.py
  • test_tf_layers.py
  • test_timeout.py
  • test_utils_predict.py
  • test_yapf_format.py

tl.files

All save/load methods are also wrapped as class method in model core.