Skip to content

tmpsrcrepo/algo-Impl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 

Repository files navigation

Computation graph & SGD Implementations

Done:

  1. computational graph implementation inspired by Karpathy's blog post & cs231n: http://karpathy.github.io/neuralnets/
  • basic operations: *, +, sigmoid, max and softmaxCrossEntropyError
  • topological sort for the execution order
  • gradient descent (most basic, no adaptive learning rate update or momentum stuff)

TODO:

  1. Fix vector multiplication & run some tests (p18 https://cs224d.stanford.edu/lectures/CS224d-Lecture6.pdf)
  2. Improvements
    • Cost function parser (i.e. convert "W*x + b" ->
      g1 = multiplyGate(W, x)
      g2 = sumGate(g1, b)) (optional)
    • regularization
    • graph
  3. Different versions of SGD:
    • momentum
    • SVRG (Johnson & Zhang, NIPS 2013)
    • Adaptive Learning Rate for Stochastic Variance Inference (Ranganath et al, JMLR 13)
    • Adam (Kingma & Lei Ba, ICLR 2015)
  4. RNN gate, GRU gate (long-term lol)

About

computation graph impl

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages