This repos contains sample project for AI-Assited Labeling for Radiology AI using NVIDIA Clara on TrainingData.io
docker build -t gtc2020-trainingdataio .
docker run -p 8888:8888 9090:9090 8090:8090 8000:8000 --runtime=nvidia gtc2020-trainingdataio /bin/bash
Once the container is running,
cd /workspace/content
docker login hub.docker.com
docker login hub.docker.com
mkdir -p /path/to/db/directory
mkdir -p /path/to/images/directory
mkdir -p /tmp
export DB_MOUNT=/path/to/temp/directory && export IMAGE_MOUNT=/path/to/image/directory && docker-compose -f docker-compose.ngx.yml up -d
curl -X PUT "http://0.0.0.0:5000/admin/model/segmentation_ct_liver_and_tumor" -H "accept: application/json" -H "Content-Type: application/json" -d '{"path":"nvidia/med/segmentation_ct_liver_and_tumor","version":"1"}'
10. Open Webbrower: https://app.trainingdata.io/v1/td/login
Login with oAuth or username & password
On tab “Labeling Jobs” select “On-Premises Labeling Job”
Click “Start Labeling”
Observe http://127.0.0.1 loads in web-browser
- Download 3D Slicer: https://trainingdataio.s3.amazonaws.com/SlicerLatest-TDIO-GTC2020Workshop.tgz
- Extract and open Slicer executable
- Setup /workspace/content/slicer-plugin as module in Slicer
- Open the labeling project in "Open in 3D Slicer"
Manage On-Premises TrainingData Labeling
How to create on-premises datasets?
How to create labeling instructions?
How to distribute labeling jobs among annotators and reviewers?
Supported export formats for annotated data?
Email: support@trainingdata.io