OpenAI PHP is a community-maintained PHP API client that allows you to interact with the Open AI API. If you or your business relies on this package, it's important to support the developers who have contributed their time and effort to create and maintain this valuable tool:
- Nuno Maduro: github.com/sponsors/nunomaduro
- Sandro Gehri: github.com/sponsors/gehrisandro
- Get Started
- Usage
- Models Resource
- Completions Resource
- Chat Resource
- Audio Resource
- Embeddings Resource
- Files Resource
- FineTuning Resource
- Moderations Resource
- Images Resource
- Assistants Resource
- Assistants Files Resource
- Threads Resource
- Threads Messages Resource
- Threads Messages Files Resource
- Threads Runs Resource
- Threads Runs Steps Resource
- FineTunes Resource (deprecated)
- Edits Resource (deprecated)
- Meta Information
- Troubleshooting
- Testing
- Services
Requires PHP 8.1+
First, install OpenAI via the Composer package manager:
composer require openai-php/client
Ensure that the php-http/discovery
composer plugin is allowed to run or install a client manually if your project does not already have a PSR-18 client integrated.
composer require guzzlehttp/guzzle
Then, interact with OpenAI's API:
$yourApiKey = getenv('YOUR_API_KEY');
$client = OpenAI::client($yourApiKey);
$result = $client->chat()->create([
'model' => 'gpt-4',
'messages' => [
['role' => 'user', 'content' => 'Hello!'],
],
]);
echo $result->choices[0]->message->content; // Hello! How can I assist you today?
If necessary, it is possible to configure and create a separate client.
$yourApiKey = getenv('YOUR_API_KEY');
$client = OpenAI::factory()
->withApiKey($yourApiKey)
->withOrganization('your-organization') // default: null
->withBaseUri('openai.example.com/v1') // default: api.openai.com/v1
->withHttpClient($client = new \GuzzleHttp\Client([])) // default: HTTP client found using PSR-18 HTTP Client Discovery
->withHttpHeader('X-My-Header', 'foo')
->withQueryParam('my-param', 'bar')
->withStreamHandler(fn (RequestInterface $request): ResponseInterface => $client->send($request, [
'stream' => true // Allows to provide a custom stream handler for the http client.
]))
->make();
Lists the currently available models, and provides basic information about each one such as the owner and availability.
$response = $client->models()->list();
$response->object; // 'list'
foreach ($response->data as $result) {
$result->id; // 'gpt-3.5-turbo-instruct'
$result->object; // 'model'
// ...
}
$response->toArray(); // ['object' => 'list', 'data' => [...]]
Retrieves a model instance, providing basic information about the model such as the owner and permissioning.
$response = $client->models()->retrieve('gpt-3.5-turbo-instruct');
$response->id; // 'gpt-3.5-turbo-instruct'
$response->object; // 'model'
$response->created; // 1642018370
$response->ownedBy; // 'openai'
$response->toArray(); // ['id' => 'gpt-3.5-turbo-instruct', ...]
Delete a fine-tuned model.
$response = $client->models()->delete('curie:ft-acmeco-2021-03-03-21-44-20');
$response->id; // 'curie:ft-acmeco-2021-03-03-21-44-20'
$response->object; // 'model'
$response->deleted; // true
$response->toArray(); // ['id' => 'curie:ft-acmeco-2021-03-03-21-44-20', ...]
Creates a completion for the provided prompt and parameters.
$response = $client->completions()->create([
'model' => 'gpt-3.5-turbo-instruct',
'prompt' => 'Say this is a test',
'max_tokens' => 6,
'temperature' => 0
]);
$response->id; // 'cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7'
$response->object; // 'text_completion'
$response->created; // 1589478378
$response->model; // 'gpt-3.5-turbo-instruct'
foreach ($response->choices as $result) {
$result->text; // '\n\nThis is a test'
$result->index; // 0
$result->logprobs; // null
$result->finishReason; // 'length' or null
}
$response->usage->promptTokens; // 5,
$response->usage->completionTokens; // 6,
$response->usage->totalTokens; // 11
$response->toArray(); // ['id' => 'cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7', ...]
Creates a streamed completion for the provided prompt and parameters.
$stream = $client->completions()->createStreamed([
'model' => 'gpt-3.5-turbo-instruct',
'prompt' => 'Hi',
'max_tokens' => 10,
]);
foreach($stream as $response){
$response->choices[0]->text;
}
// 1. iteration => 'I'
// 2. iteration => ' am'
// 3. iteration => ' very'
// 4. iteration => ' excited'
// ...
Creates a completion for the chat message.
$response = $client->chat()->create([
'model' => 'gpt-3.5-turbo',
'messages' => [
['role' => 'user', 'content' => 'Hello!'],
],
]);
$response->id; // 'chatcmpl-6pMyfj1HF4QXnfvjtfzvufZSQq6Eq'
$response->object; // 'chat.completion'
$response->created; // 1677701073
$response->model; // 'gpt-3.5-turbo-0301'
foreach ($response->choices as $result) {
$result->index; // 0
$result->message->role; // 'assistant'
$result->message->content; // '\n\nHello there! How can I assist you today?'
$result->finishReason; // 'stop'
}
$response->usage->promptTokens; // 9,
$response->usage->completionTokens; // 12,
$response->usage->totalTokens; // 21
$response->toArray(); // ['id' => 'chatcmpl-6pMyfj1HF4QXnfvjtfzvufZSQq6Eq', ...]
Creates a completion for the chat message with a tool call.
$response = $client->chat()->create([
'model' => 'gpt-3.5-turbo-0613',
'messages' => [
['role' => 'user', 'content' => 'What\'s the weather like in Boston?'],
],
'tools' => [
[
'type' => 'function',
'function' => [
'name' => 'get_current_weather',
'description' => 'Get the current weather in a given location',
'parameters' => [
'type' => 'object',
'properties' => [
'location' => [
'type' => 'string',
'description' => 'The city and state, e.g. San Francisco, CA',
],
'unit' => [
'type' => 'string',
'enum' => ['celsius', 'fahrenheit']
],
],
'required' => ['location'],
],
],
]
]
]);
$response->id; // 'chatcmpl-6pMyfj1HF4QXnfvjtfzvufZSQq6Eq'
$response->object; // 'chat.completion'
$response->created; // 1677701073
$response->model; // 'gpt-3.5-turbo-0613'
foreach ($response->choices as $result) {
$result->index; // 0
$result->message->role; // 'assistant'
$result->message->content; // null
$result->message->toolCalls[0]->id; // 'call_123'
$result->message->toolCalls[0]->type; // 'function'
$result->message->toolCalls[0]->function->name; // 'get_current_weather'
$result->message->toolCalls[0]->function->arguments; // "{\n \"location\": \"Boston, MA\"\n}"
$result->finishReason; // 'tool_calls'
}
$response->usage->promptTokens; // 82,
$response->usage->completionTokens; // 18,
$response->usage->totalTokens; // 100
Creates a completion for the chat message with a function call.
$response = $client->chat()->create([
'model' => 'gpt-3.5-turbo-0613',
'messages' => [
['role' => 'user', 'content' => 'What\'s the weather like in Boston?'],
],
'functions' => [
[
'name' => 'get_current_weather',
'description' => 'Get the current weather in a given location',
'parameters' => [
'type' => 'object',
'properties' => [
'location' => [
'type' => 'string',
'description' => 'The city and state, e.g. San Francisco, CA',
],
'unit' => [
'type' => 'string',
'enum' => ['celsius', 'fahrenheit']
],
],
'required' => ['location'],
],
]
]
]);
$response->id; // 'chatcmpl-6pMyfj1HF4QXnfvjtfzvufZSQq6Eq'
$response->object; // 'chat.completion'
$response->created; // 1677701073
$response->model; // 'gpt-3.5-turbo-0613'
foreach ($response->choices as $result) {
$result->index; // 0
$result->message->role; // 'assistant'
$result->message->content; // null
$result->message->functionCall->name; // 'get_current_weather'
$result->message->functionCall->arguments; // "{\n \"location\": \"Boston, MA\"\n}"
$result->finishReason; // 'function_call'
}
$response->usage->promptTokens; // 82,
$response->usage->completionTokens; // 18,
$response->usage->totalTokens; // 100
Creates a streamed completion for the chat message.
$stream = $client->chat()->createStreamed([
'model' => 'gpt-4',
'messages' => [
['role' => 'user', 'content' => 'Hello!'],
],
]);
foreach($stream as $response){
$response->choices[0]->toArray();
}
// 1. iteration => ['index' => 0, 'delta' => ['role' => 'assistant'], 'finish_reason' => null]
// 2. iteration => ['index' => 0, 'delta' => ['content' => 'Hello'], 'finish_reason' => null]
// 3. iteration => ['index' => 0, 'delta' => ['content' => '!'], 'finish_reason' => null]
// ...
Generates audio from the input text.
$client->audio()->speech([
'model' => 'tts-1',
'input' => 'The quick brown fox jumped over the lazy dog.',
'voice' => 'alloy',
]); // audio file content as string
Generates streamed audio from the input text.
$stream = $client->audio()->speechStreamed([
'model' => 'tts-1',
'input' => 'The quick brown fox jumped over the lazy dog.',
'voice' => 'alloy',
]);
foreach($stream as $chunk){
$chunk; // chunk of audio file content as string
}
Transcribes audio into the input language.
$response = $client->audio()->transcribe([
'model' => 'whisper-1',
'file' => fopen('audio.mp3', 'r'),
'response_format' => 'verbose_json',
'timestamp_granularities' => ['segment', 'word']
]);
$response->task; // 'transcribe'
$response->language; // 'english'
$response->duration; // 2.95
$response->text; // 'Hello, how are you?'
foreach ($response->segments as $segment) {
$segment->index; // 0
$segment->seek; // 0
$segment->start; // 0.0
$segment->end; // 4.0
$segment->text; // 'Hello, how are you?'
$segment->tokens; // [50364, 2425, 11, 577, 366, 291, 30, 50564]
$segment->temperature; // 0.0
$segment->avgLogprob; // -0.45045216878255206
$segment->compressionRatio; // 0.7037037037037037
$segment->noSpeechProb; // 0.1076972484588623
$segment->transient; // false
}
foreach ($response->words as $word) {
$word->word; // 'Hello'
$word->start; // 0.31
$word->end; // 0.92
}
$response->toArray(); // ['task' => 'transcribe', ...]
Translates audio into English.
$response = $client->audio()->translate([
'model' => 'whisper-1',
'file' => fopen('german.mp3', 'r'),
'response_format' => 'verbose_json',
]);
$response->task; // 'translate'
$response->language; // 'english'
$response->duration; // 2.95
$response->text; // 'Hello, how are you?'
foreach ($response->segments as $segment) {
$segment->index; // 0
$segment->seek; // 0
$segment->start; // 0.0
$segment->end; // 4.0
$segment->text; // 'Hello, how are you?'
$segment->tokens; // [50364, 2425, 11, 577, 366, 291, 30, 50564]
$segment->temperature; // 0.0
$segment->avgLogprob; // -0.45045216878255206
$segment->compressionRatio; // 0.7037037037037037
$segment->noSpeechProb; // 0.1076972484588623
$segment->transient; // false
}
$response->toArray(); // ['task' => 'translate', ...]
Creates an embedding vector representing the input text.
$response = $client->embeddings()->create([
'model' => 'text-similarity-babbage-001',
'input' => 'The food was delicious and the waiter...',
]);
$response->object; // 'list'
foreach ($response->embeddings as $embedding) {
$embedding->object; // 'embedding'
$embedding->embedding; // [0.018990106880664825, -0.0073809814639389515, ...]
$embedding->index; // 0
}
$response->usage->promptTokens; // 8,
$response->usage->totalTokens; // 8
$response->toArray(); // ['data' => [...], ...]
Returns a list of files that belong to the user's organization.
$response = $client->files()->list();
$response->object; // 'list'
foreach ($response->data as $result) {
$result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3'
$result->object; // 'file'
// ...
}
$response->toArray(); // ['object' => 'list', 'data' => [...]]
Delete a file.
$response = $client->files()->delete($file);
$response->id; // 'file-XjGxS3KTG0uNmNOK362iJua3'
$response->object; // 'file'
$response->deleted; // true
$response->toArray(); // ['id' => 'file-XjGxS3KTG0uNmNOK362iJua3', ...]
Returns information about a specific file.
$response = $client->files()->retrieve('file-XjGxS3KTG0uNmNOK362iJua3');
$response->id; // 'file-XjGxS3KTG0uNmNOK362iJua3'
$response->object; // 'file'
$response->bytes; // 140
$response->createdAt; // 1613779657
$response->filename; // 'mydata.jsonl'
$response->purpose; // 'fine-tune'
$response->status; // 'succeeded'
$response->status_details; // null
$response->toArray(); // ['id' => 'file-XjGxS3KTG0uNmNOK362iJua3', ...]
Upload a file that contains document(s) to be used across various endpoints/features.
$response = $client->files()->upload([
'purpose' => 'fine-tune',
'file' => fopen('my-file.jsonl', 'r'),
]);
$response->id; // 'file-XjGxS3KTG0uNmNOK362iJua3'
$response->object; // 'file'
$response->bytes; // 140
$response->createdAt; // 1613779657
$response->filename; // 'mydata.jsonl'
$response->purpose; // 'fine-tune'
$response->status; // 'succeeded'
$response->status_details; // null
$response->toArray(); // ['id' => 'file-XjGxS3KTG0uNmNOK362iJua3', ...]
Returns the contents of the specified file.
$client->files()->download($file); // '{"prompt": "<prompt text>", ...'
Creates a job that fine-tunes a specified model from a given dataset.
$response = $client->fineTuning()->createJob([
'training_file' => 'file-abc123',
'validation_file' => null,
'model' => 'gpt-3.5-turbo',
'hyperparameters' => [
'n_epochs' => 4,
],
'suffix' => null,
]);
$response->id; // 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F'
$response->object; // 'fine_tuning.job'
$response->model; // 'gpt-3.5-turbo-0613'
$response->fineTunedModel; // null
// ...
$response->toArray(); // ['id' => 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
List your organization's fine-tuning jobs.
$response = $client->fineTuning()->listJobs();
$response->object; // 'list'
foreach ($response->data as $result) {
$result->id; // 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F'
$result->object; // 'fine_tuning.job'
// ...
}
$response->toArray(); // ['object' => 'list', 'data' => [...]]
You can pass additional parameters to the listJobs
method to narrow down the results.
$response = $client->fineTuning()->listJobs([
'limit' => 3, // Number of jobs to retrieve (Default: 20)
'after' => 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F', // Identifier for the last job from the previous pagination request.
]);
Get info about a fine-tuning job.
$response = $client->fineTuning()->retrieveJob('ftjob-AF1WoRqd3aJAHsqc9NY7iL8F');
$response->id; // 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F'
$response->object; // 'fine_tuning.job'
$response->model; // 'gpt-3.5-turbo-0613'
$response->createdAt; // 1614807352
$response->finishedAt; // 1692819450
$response->fineTunedModel; // 'ft:gpt-3.5-turbo-0613:jwe-dev::7qnxQ0sQ'
$response->organizationId; // 'org-jwe45798ASN82s'
$response->resultFiles[0]; // 'file-1bl05WrhsKDDEdg8XSP617QF'
$response->status; // 'succeeded'
$response->validationFile; // null
$response->trainingFile; // 'file-abc123'
$response->trainedTokens; // 5049
$response->hyperparameters->nEpochs; // 9
$response->toArray(); // ['id' => 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
Immediately cancel a fine-tune job.
$response = $client->fineTuning()->cancelJob('ftjob-AF1WoRqd3aJAHsqc9NY7iL8F');
$response->id; // 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F'
$response->object; // 'fine_tuning.job'
// ...
$response->status; // 'cancelled'
// ...
$response->toArray(); // ['id' => 'ftjob-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
Get status updates for a fine-tuning job.
$response = $client->fineTuning()->listJobEvents('ftjob-AF1WoRqd3aJAHsqc9NY7iL8F');
$response->object; // 'list'
foreach ($response->data as $result) {
$result->object; // 'fine_tuning.job.event'
$result->createdAt; // 1614807352
// ...
}
$response->toArray(); // ['object' => 'list', 'data' => [...]]
You can pass additional parameters to the listJobEvents
method to narrow down the results.
$response = $client->fineTuning()->listJobEvents('ftjob-AF1WoRqd3aJAHsqc9NY7iL8F', [
'limit' => 3, // Number of events to retrieve (Default: 20)
'after' => 'ftevent-kLPSMIcsqshEUEJVOVBVcHlP', // Identifier for the last event from the previous pagination request.
]);
Creates a job that fine-tunes a specified model from a given dataset.
$response = $client->fineTunes()->create([
'training_file' => 'file-ajSREls59WBbvgSzJSVWxMCB',
'validation_file' => 'file-XjSREls59WBbvgSzJSVWxMCa',
'model' => 'curie',
'n_epochs' => 4,
'batch_size' => null,
'learning_rate_multiplier' => null,
'prompt_loss_weight' => 0.01,
'compute_classification_metrics' => false,
'classification_n_classes' => null,
'classification_positive_class' => null,
'classification_betas' => [],
'suffix' => null,
]);
$response->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F'
$response->object; // 'fine-tune'
// ...
$response->toArray(); // ['id' => 'ft-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
List your organization's fine-tuning jobs.
$response = $client->fineTunes()->list();
$response->object; // 'list'
foreach ($response->data as $result) {
$result->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F'
$result->object; // 'fine-tune'
// ...
}
$response->toArray(); // ['object' => 'list', 'data' => [...]]
Gets info about the fine-tune job.
$response = $client->fineTunes()->retrieve('ft-AF1WoRqd3aJAHsqc9NY7iL8F');
$response->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F'
$response->object; // 'fine-tune'
$response->model; // 'curie'
$response->createdAt; // 1614807352
$response->fineTunedModel; // 'curie => ft-acmeco-2021-03-03-21-44-20'
$response->organizationId; // 'org-jwe45798ASN82s'
$response->resultFiles; // [
$response->status; // 'succeeded'
$response->validationFiles; // [
$response->trainingFiles; // [
$response->updatedAt; // 1614807865
foreach ($response->events as $result) {
$result->object; // 'fine-tune-event'
$result->createdAt; // 1614807352
$result->level; // 'info'
$result->message; // 'Job enqueued. Waiting for jobs ahead to complete. Queue number => 0.'
}
$response->hyperparams->batchSize; // 4
$response->hyperparams->learningRateMultiplier; // 0.1
$response->hyperparams->nEpochs; // 4
$response->hyperparams->promptLossWeight; // 0.1
foreach ($response->resultFiles as $result) {
$result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3'
$result->object; // 'file'
$result->bytes; // 140
$result->createdAt; // 1613779657
$result->filename; // 'mydata.jsonl'
$result->purpose; // 'fine-tune'
$result->status; // 'succeeded'
$result->status_details; // null
}
foreach ($response->validationFiles as $result) {
$result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3'
// ...
}
foreach ($response->trainingFiles as $result) {
$result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3'
// ...
}
$response->toArray(); // ['id' => 'ft-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
Immediately cancel a fine-tune job.
$response = $client->fineTunes()->cancel('ft-AF1WoRqd3aJAHsqc9NY7iL8F');
$response->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F'
$response->object; // 'fine-tune'
// ...
$response->status; // 'cancelled'
// ...
$response->toArray(); // ['id' => 'ft-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
Get fine-grained status updates for a fine-tune job.
$response = $client->fineTunes()->listEvents('ft-AF1WoRqd3aJAHsqc9NY7iL8F');
$response->object; // 'list'
foreach ($response->data as $result) {
$result->object; // 'fine-tune-event'
$result->createdAt; // 1614807352
// ...
}
$response->toArray(); // ['object' => 'list', 'data' => [...]]
Get streamed fine-grained status updates for a fine-tune job.
$stream = $client->fineTunes()->listEventsStreamed('ft-y3OpNlc8B5qBVGCCVsLZsDST');
foreach($stream as $response){
$response->message;
}
// 1. iteration => 'Created fine-tune: ft-y3OpNlc8B5qBVGCCVsLZsDST'
// 2. iteration => 'Fine-tune costs $0.00'
// ...
// xx. iteration => 'Uploaded result file: file-ajLKUCMsFPrT633zqwr0eI4l'
// xx. iteration => 'Fine-tune succeeded'
Classifies if text violates OpenAI's Content Policy.
$response = $client->moderations()->create([
'model' => 'text-moderation-latest',
'input' => 'I want to k*** them.',
]);
$response->id; // modr-5xOyuS
$response->model; // text-moderation-003
foreach ($response->results as $result) {
$result->flagged; // true
foreach ($result->categories as $category) {
$category->category->value; // 'violence'
$category->violated; // true
$category->score; // 0.97431367635727
}
}
$response->toArray(); // ['id' => 'modr-5xOyuS', ...]
Creates an image given a prompt.
$response = $client->images()->create([
'model' => 'dall-e-3',
'prompt' => 'A cute baby sea otter',
'n' => 1,
'size' => '1024x1024',
'response_format' => 'url',
]);
$response->created; // 1589478378
foreach ($response->data as $data) {
$data->url; // 'https://oaidalleapiprodscus.blob.core.windows.net/private/...'
$data->b64_json; // null
}
$response->toArray(); // ['created' => 1589478378, data => ['url' => 'https://oaidalleapiprodscus...', ...]]
Creates an edited or extended image given an original image and a prompt.
$response = $client->images()->edit([
'image' => fopen('image_edit_original.png', 'r'),
'mask' => fopen('image_edit_mask.png', 'r'),
'prompt' => 'A sunlit indoor lounge area with a pool containing a flamingo',
'n' => 1,
'size' => '256x256',
'response_format' => 'url',
]);
$response->created; // 1589478378
foreach ($response->data as $data) {
$data->url; // 'https://oaidalleapiprodscus.blob.core.windows.net/private/...'
$data->b64_json; // null
}
$response->toArray(); // ['created' => 1589478378, data => ['url' => 'https://oaidalleapiprodscus...', ...]]
Creates a variation of a given image.
$response = $client->images()->variation([
'image' => fopen('image_edit_original.png', 'r'),
'n' => 1,
'size' => '256x256',
'response_format' => 'url',
]);
$response->created; // 1589478378
foreach ($response->data as $data) {
$data->url; // 'https://oaidalleapiprodscus.blob.core.windows.net/private/...'
$data->b64_json; // null
}
$response->toArray(); // ['created' => 1589478378, data => ['url' => 'https://oaidalleapiprodscus...', ...]]
Note: If you are creating the client manually from the factory. Make sure you provide the necessary header:
$factory->withHttpHeader('OpenAI-Beta', 'assistants=v1')
Create an assistant with a model and instructions.
$response = $client->assistants()->create([
'instructions' => 'You are a personal math tutor. When asked a question, write and run Python code to answer the question.',
'name' => 'Math Tutor',
'tools' => [
[
'type' => 'code_interpreter',
],
],
'model' => 'gpt-4',
]);
$response->id; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->object; // 'assistant'
$response->createdAt; // 1623936000
$response->name; // 'Math Tutor'
$response->instructions; // 'You are a personal math tutor. When asked a question, write and run Python code to answer the question.'
$response->model; // 'gpt-4'
$response->description; // null
$response->tools[0]->type; // 'code_interpreter'
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'asst_gxzBkD1wkKEloYqZ410pT5pd', ...]
Retrieves an assistant.
$response = $client->assistants()->retrieve('asst_gxzBkD1wkKEloYqZ410pT5pd');
$response->id; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->object; // 'assistant'
$response->createdAt; // 1623936000
$response->name; // 'Math Tutor'
$response->instructions; // 'You are a personal math tutor. When asked a question, write and run Python code to answer the question.'
$response->model; // 'gpt-4'
$response->description; // null
$response->tools[0]->type; // 'code_interpreter'
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'asst_gxzBkD1wkKEloYqZ410pT5pd', ...]
Modifies an assistant.
$response = $client->assistants()->modify('asst_gxzBkD1wkKEloYqZ410pT5pd', [
'name' => 'New Math Tutor',
]);
$response->id; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->object; // 'assistant'
$response->createdAt; // 1623936000
$response->name; // 'New Math Tutor'
$response->instructions; // 'You are a personal math tutor. When asked a question, write and run Python code to answer the question.'
$response->model; // 'gpt-4'
$response->description; // null
$response->tools[0]->type; // 'code_interpreter'
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'asst_gxzBkD1wkKEloYqZ410pT5pd', ...]
Delete an assistant.
$response = $client->assistants()->delete('asst_gxzBkD1wkKEloYqZ410pT5pd');
$response->id; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->object; // 'assistant.deleted'
$response->deleted; // true
$response->toArray(); // ['id' => 'asst_gxzBkD1wkKEloYqZ410pT5pd', ...]
Returns a list of assistants.
$response = $client->assistants()->list([
'limit' => 10,
]);
$response->object; // 'list'
$response->firstId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->lastId; // 'asst_reHHtAM0jKLDIxanM6gP6DaR'
$response->hasMore; // true
foreach ($response->data as $result) {
$result->id; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
// ...
}
$response->toArray(); // ['object' => 'list', ...]]
Create an assistant file by attaching a file to an assistant.
$response = $client->assistants()->files()->create('asst_gxzBkD1wkKEloYqZ410pT5pd', [
'file_id' => 'file-wB6RM6wHdA49HfS2DJ9fEyrH',
]);
$response->id; // 'file-wB6RM6wHdA49HfS2DJ9fEyrH'
$response->object; // 'assistant.file'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->toArray(); // ['id' => 'file-wB6RM6wHdA49HfS2DJ9fEyrH', ...]
Retrieves an AssistantFile.
$response = $client->assistants()->files()->retrieve(
assistantId: 'asst_gxzBkD1wkKEloYqZ410pT5pd',
fileId: 'file-wB6RM6wHdA49HfS2DJ9fEyrH'
);
$response->id; // 'file-wB6RM6wHdA49HfS2DJ9fEyrH'
$response->object; // 'assistant.file'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->toArray(); // ['id' => 'file-wB6RM6wHdA49HfS2DJ9fEyrH', ...]
Delete an assistant file.
$response = $client->assistants()->files()->delete(
assistantId: 'asst_gxzBkD1wkKEloYqZ410pT5pd',
fileId: 'file-wB6RM6wHdA49HfS2DJ9fEyrH'
);
$response->id; // 'file-wB6RM6wHdA49HfS2DJ9fEyrH'
$response->object; // 'assistant.file.deleted'
$response->deleted; // true
$response->toArray(); // ['id' => 'file-wB6RM6wHdA49HfS2DJ9fEyrH', ...]
Returns a list of assistant files.
$response = $client->assistants()->files()->list('asst_gxzBkD1wkKEloYqZ410pT5pd', [
'limit' => 2,
]);
$response->object; // 'list'
$response->firstId; // 'file-wB6RM6wHdA49HfS2DJ9fEyrH'
$response->lastId; // 'file-6EsV79Y261TEmi0PY5iHbZdS'
$response->hasMore; // true
foreach ($response->data as $result) {
$result->id; // 'file-wB6RM6wHdA49HfS2DJ9fEyrH'
// ...
}
$response->toArray(); // ['object' => 'list', ...]
Create a thread.
$response = $client->threads()->create([]);
$response->id; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->object; // 'thread'
$response->createdAt; // 1623936000
$response->metadata; // []
$response->toArray(); // ['id' => 'thread_tKFLqzRN9n7MnyKKvc1Q7868', ...]
Create a thread and run it in one request.
$response = $client->threads()->createAndRun(
[
'assistant_id' => 'asst_gxzBkD1wkKEloYqZ410pT5pd',
'thread' => [
'messages' =>
[
[
'role' => 'user',
'content' => 'Explain deep learning to a 5 year old.',
],
],
],
],
);
$response->id; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->object; // 'thread.run'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->status; // 'queued'
$response->startedAt; // null
$response->expiresAt; // 1699622335
$response->cancelledAt; // null
$response->failedAt; // null
$response->completedAt; // null
$response->lastError; // null
$response->model; // 'gpt-4'
$response->instructions; // null
$response->tools; // []
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'run_4RCYyYzX9m41WQicoJtUQAb8', ...]
Retrieves a thread.
$response = $client->threads()->retrieve('thread_tKFLqzRN9n7MnyKKvc1Q7868');
$response->id; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->object; // 'thread'
$response->createdAt; // 1623936000
$response->metadata; // []
$response->toArray(); // ['id' => 'thread_tKFLqzRN9n7MnyKKvc1Q7868', ...]
Modifies a thread.
$response = $client->threads()->modify('thread_tKFLqzRN9n7MnyKKvc1Q7868', [
'metadata' => [
'name' => 'My new thread name',
],
]);
$response->id; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->object; // 'thread'
$response->createdAt; // 1623936000
$response->metadata; // ['name' => 'My new thread name']
$response->toArray(); // ['id' => 'thread_tKFLqzRN9n7MnyKKvc1Q7868', ...]
Delete a thread.
$response = $client->threads()->delete('thread_tKFLqzRN9n7MnyKKvc1Q7868');
$response->id; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->object; // 'thread.deleted'
$response->deleted; // true
$response->toArray(); // ['id' => 'thread_tKFLqzRN9n7MnyKKvc1Q7868', ...]
Create a message.
$response = $client->threads()->messages()->create('thread_tKFLqzRN9n7MnyKKvc1Q7868', [
'role' => 'user',
'content' => 'What is the sum of 5 and 7?',
]);
$response->id; // 'msg_SKYwvF3zcigxthfn6F4hnpdU'
$response->object; // 'thread.message'
$response->createdAt; // 1623936000
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->role; // 'user'
$response->content[0]->type; // 'text'
$response->content[0]->text->value; // 'What is the sum of 5 and 7?'
$response->content[0]->text->annotations; // []
$response->assistantId; // null
$response->runId; // null
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'msg_SKYwvF3zcigxthfn6F4hnpdU', ...]
Retrieve a message.
$response = $client->threads()->messages()->retrieve(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
messageId: 'msg_SKYwvF3zcigxthfn6F4hnpdU',
);
$response->id; // 'msg_SKYwvF3zcigxthfn6F4hnpdU'
$response->object; // 'thread.message'
$response->createdAt; // 1623936000
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->role; // 'user'
$response->content[0]->type; // 'text'
$response->content[0]->text->value; // 'What is the sum of 5 and 7?'
$response->content[0]->text->annotations; // []
$response->assistantId; // null
$response->runId; // null
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'msg_SKYwvF3zcigxthfn6F4hnpdU', ...]
Modifies a message.
$response = $client->threads()->messages()->modify(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
messageId: 'msg_SKYwvF3zcigxthfn6F4hnpdU',
parameters: [
'metadata' => [
'name' => 'My new message name',
],
],
);
$response->id; // 'msg_SKYwvF3zcigxthfn6F4hnpdU'
$response->object; // 'thread.message'
$response->createdAt; // 1623936000
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->role; // 'user'
$response->content[0]->type; // 'text'
$response->content[0]->text->value; // 'What is the sum of 5 and 7?'
$response->content[0]->text->annotations; // []
$response->assistantId; // null
$response->runId; // null
$response->fileIds; // []
$response->metadata; // ['name' => 'My new message name']
$response->toArray(); // ['id' => 'msg_SKYwvF3zcigxthfn6F4hnpdU', ...]
Returns a list of messages for a given thread.
$response = $client->threads()->messages()->list('thread_tKFLqzRN9n7MnyKKvc1Q7868', [
'limit' => 10,
]);
$response->object; // 'list'
$response->firstId; // 'msg_SKYwvF3zcigxthfn6F4hnpdU'
$response->lastId; // 'msg_SKYwvF3zcigxthfn6F4hnpdU'
$response->hasMore; // false
foreach ($response->data as $result) {
$result->id; // 'msg_SKYwvF3zcigxthfn6F4hnpdU'
// ...
}
$response->toArray(); // ['object' => 'list', ...]]
Retrieves a message file.
$response = $client->threads()->messages()->files()->retrieve(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
messageId: 'msg_SKYwvF3zcigxthfn6F4hnpdU',
fileId: 'file-DhxjnFCaSHc4ZELRGKwTMFtI',
);
$response->id; // 'file-DhxjnFCaSHc4ZELRGKwTMFtI'
$response->object; // 'thread.message.file'
$response->createdAt; // 1623936000
$response->threadId; // 'msg_SKYwvF3zcigxthfn6F4hnpdU'
$response->toArray(); // ['id' => 'file-DhxjnFCaSHc4ZELRGKwTMFtI', ...]
Returns a list of message files.
$response = $client->threads()->messages()->files()->list(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
messageId: 'msg_SKYwvF3zcigxthfn6F4hnpdU',
parameters: [
'limit' => 10,
],
);
$response->object; // 'list'
$response->firstId; // 'file-DhxjnFCaSHc4ZELRGKwTMFtI'
$response->lastId; // 'file-DhxjnFCaSHc4ZELRGKwTMFtI'
$response->hasMore; // false
foreach ($response->data as $result) {
$result->id; // 'file-DhxjnFCaSHc4ZELRGKwTMFtI'
// ...
}
$response->toArray(); // ['object' => 'list', ...]]
Create a run.
$response = $client->threads()->runs()->create(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
parameters: [
'assistant_id' => 'asst_gxzBkD1wkKEloYqZ410pT5pd',
],
);
$response->id; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->object; // 'thread.run'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->status; // 'queued'
$response->startedAt; // null
$response->expiresAt; // 1699622335
$response->cancelledAt; // null
$response->failedAt; // null
$response->completedAt; // null
$response->lastError; // null
$response->model; // 'gpt-4'
$response->instructions; // null
$response->tools[0]->type; // 'code_interpreter'
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'run_4RCYyYzX9m41WQicoJtUQAb8', ...]
Retrieves a run.
$response = $client->threads()->runs()->retrieve(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
runId: 'run_4RCYyYzX9m41WQicoJtUQAb8',
);
$response->id; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->object; // 'thread.run'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->status; // 'queued'
$response->startedAt; // null
$response->expiresAt; // 1699622335
$response->cancelledAt; // null
$response->failedAt; // null
$response->completedAt; // null
$response->lastError; // null
$response->model; // 'gpt-4'
$response->instructions; // null
$response->tools[0]->type; // 'code_interpreter'
$response->fileIds; // []
$response->metadata; // []
$response->usage->promptTokens; // 25,
$response->usage->completionTokens; // 32,
$response->usage->totalTokens; // 57
$response->toArray(); // ['id' => 'run_4RCYyYzX9m41WQicoJtUQAb8', ...]
Modifies a run.
$response = $client->threads()->runs()->modify(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
runId: 'run_4RCYyYzX9m41WQicoJtUQAb8',
parameters: [
'metadata' => [
'name' => 'My new run name',
],
],
);
$response->id; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->object; // 'thread.run'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->status; // 'queued'
$response->startedAt; // null
$response->expiresAt; // 1699622335
$response->cancelledAt; // null
$response->failedAt; // null
$response->completedAt; // null
$response->lastError; // null
$response->model; // 'gpt-4'
$response->instructions; // null
$response->tools[0]->type; // 'code_interpreter'
$response->fileIds; // []
$response->metadata; // ['name' => 'My new run name']
$response->toArray(); // ['id' => 'run_4RCYyYzX9m41WQicoJtUQAb8', ...]
Cancels a run that is in_progress
.
$response = $client->threads()->runs()->cancel(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
runId: 'run_4RCYyYzX9m41WQicoJtUQAb8',
);
$response->id; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->object; // 'thread.run'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->status; // 'cancelling'
$response->startedAt; // null
$response->expiresAt; // 1699622335
$response->cancelledAt; // null
$response->failedAt; // null
$response->completedAt; // null
$response->lastError; // null
$response->model; // 'gpt-4'
$response->instructions; // null
$response->tools[0]->type; // 'code_interpreter'
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'run_4RCYyYzX9m41WQicoJtUQAb8', ...]
When a run has the status: requires_action
and required_action.type
is submit_tool_outputs
, this endpoint can be used to submit the outputs from the tool calls once they're all completed. All outputs must be submitted in a single request.
$response = $client->threads()->runs()->submitToolOutputs(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
runId: 'run_4RCYyYzX9m41WQicoJtUQAb8',
parameters: [
'tool_outputs' => [
[
'tool_call_id' => 'call_KSg14X7kZF2WDzlPhpQ168Mj',
'output' => '12',
],
],
]
);
$response->id; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->object; // 'thread.run'
$response->createdAt; // 1623936000
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->status; // 'in_progress'
$response->startedAt; // null
$response->expiresAt; // 1699622335
$response->cancelledAt; // null
$response->failedAt; // null
$response->completedAt; // null
$response->lastError; // null
$response->model; // 'gpt-4'
$response->instructions; // null
$response->tools[0]->type; // 'function'
$response->fileIds; // []
$response->metadata; // []
$response->toArray(); // ['id' => 'run_4RCYyYzX9m41WQicoJtUQAb8', ...]
Returns a list of runs belonging to a thread.
$response = $client->threads()->runs()->list(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
parameters: [
'limit' => 10,
],
);
$response->object; // 'list'
$response->firstId; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->lastId; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->hasMore; // false
foreach ($response->data as $result) {
$result->id; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
// ...
}
$response->toArray(); // ['object' => 'list', ...]]
Retrieves a run step.
$response = $client->threads()->runs()->steps()->retrieve(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
runId: 'run_4RCYyYzX9m41WQicoJtUQAb8',
stepId: 'step_1spQXgbAabXFm1YXrwiGIMUz',
);
$response->id; // 'step_1spQXgbAabXFm1YXrwiGIMUz'
$response->object; // 'thread.run.step'
$response->createdAt; // 1699564106
$response->runId; // 'run_4RCYyYzX9m41WQicoJtUQAb8'
$response->assistantId; // 'asst_gxzBkD1wkKEloYqZ410pT5pd'
$response->threadId; // 'thread_tKFLqzRN9n7MnyKKvc1Q7868'
$response->type; // 'message_creation'
$response->status; // 'completed'
$response->cancelledAt; // null
$response->completedAt; // 1699564119
$response->expiresAt; // null
$response->failedAt; // null
$response->lastError; // null
$response->stepDetails->type; // 'message_creation'
$response->stepDetails->messageCreation->messageId; // 'msg_i404PxKbB92d0JAmdOIcX7vA'
$response->toArray(); // ['id' => 'step_1spQXgbAabXFm1YXrwiGIMUz', ...]
Returns a list of run steps belonging to a run.
$response = $client->threads()->runs()->steps()->list(
threadId: 'thread_tKFLqzRN9n7MnyKKvc1Q7868',
runId: 'run_4RCYyYzX9m41WQicoJtUQAb8',
parameters: [
'limit' => 10,
],
);
$response->object; // 'list'
$response->firstId; // 'step_1spQXgbAabXFm1YXrwiGIMUz'
$response->lastId; // 'step_1spQXgbAabXFm1YXrwiGIMUz'
$response->hasMore; // false
foreach ($response->data as $result) {
$result->id; // 'step_1spQXgbAabXFm1YXrwiGIMUz'
// ...
}
$response->toArray(); // ['object' => 'list', ...]]
OpenAI has deprecated the Edits API and will stop working by January 4, 2024. https://openai.com/blog/gpt-4-api-general-availability#deprecation-of-the-edits-api
Creates a new edit for the provided input, instruction, and parameters.
$response = $client->edits()->create([
'model' => 'text-davinci-edit-001',
'input' => 'What day of the wek is it?',
'instruction' => 'Fix the spelling mistakes',
]);
$response->object; // 'edit'
$response->created; // 1589478378
foreach ($response->choices as $result) {
$result->text; // 'What day of the week is it?'
$result->index; // 0
}
$response->usage->promptTokens; // 25,
$response->usage->completionTokens; // 32,
$response->usage->totalTokens; // 57
$response->toArray(); // ['object' => 'edit', ...]
On all response objects you can access the meta information returned by the API via the meta()
method.
$response = $client->completions()->create([
'model' => 'gpt-3.5-turbo-instruct',
'prompt' => 'Say this is a test',
]);
$meta = $response->meta();
$meta->requestId; // '574a03e2faaf4e9fd703958e4ddc66f5'
$meta->openai->model; // 'gpt-3.5-turbo-instruct'
$meta->openai->organization; // 'org-jwe45798ASN82s'
$meta->openai->version; // '2020-10-01'
$meta->openai->processingMs; // 425
$meta->requestLimit->limit; // 3000
$meta->requestLimit->remaining; // 2999
$meta->requestLimit->reset; // '20ms'
$meta->tokenLimit->limit; // 250000
$meta->tokenLimit->remaining; // 249984
$meta->tokenLimit->reset; // '3ms'
The toArray()
method returns the meta information in the form originally returned by the API.
$meta->toArray();
// [
// 'x-request-id' => '574a03e2faaf4e9fd703958e4ddc66f5',
// 'openai-model' => 'gpt-3.5-turbo-instruct',
// 'openai-organization' => 'org-jwe45798ASN82s',
// 'openai-processing-ms' => 402,
// 'openai-version' => '2020-10-01',
// 'x-ratelimit-limit-requests' => 3000,
// 'x-ratelimit-remaining-requests' => 2999,
// 'x-ratelimit-reset-requests' => '20ms',
// 'x-ratelimit-limit-tokens' => 250000,
// 'x-ratelimit-remaining-tokens' => 249983,
// 'x-ratelimit-reset-tokens' => '3ms',
// ]
On streaming responses you can access the meta information on the reponse stream object.
$stream = $client->completions()->createStreamed([
'model' => 'gpt-3.5-turbo-instruct',
'prompt' => 'Say this is a test',
]);
$stream->meta();
For further details about the rates limits and what to do if you hit them visit the OpenAI documentation.
You may run into a timeout when sending requests to the API. The default timeout depends on the HTTP client used.
You can increase the timeout by configuring the HTTP client and passing in to the factory.
This example illustrates how to increase the timeout using Guzzle.
OpenAI::factory()
->withApiKey($apiKey)
->withOrganization($organization)
->withHttpClient(new \GuzzleHttp\Client(['timeout' => $timeout]))
->make();
The package provides a fake implementation of the OpenAI\Client
class that allows you to fake the API responses.
To test your code ensure you swap the OpenAI\Client
class with the OpenAI\Testing\ClientFake
class in your test case.
The fake responses are returned in the order they are provided while creating the fake client.
All responses are having a fake()
method that allows you to easily create a response object by only providing the parameters relevant for your test case.
use OpenAI\Testing\ClientFake;
use OpenAI\Responses\Completions\CreateResponse;
$client = new ClientFake([
CreateResponse::fake([
'choices' => [
[
'text' => 'awesome!',
],
],
]),
]);
$completion = $client->completions()->create([
'model' => 'gpt-3.5-turbo-instruct',
'prompt' => 'PHP is ',
]);
expect($completion['choices'][0]['text'])->toBe('awesome!');
In case of a streamed response you can optionally provide a resource holding the fake response data.
use OpenAI\Testing\ClientFake;
use OpenAI\Responses\Chat\CreateStreamedResponse;
$client = new ClientFake([
CreateStreamedResponse::fake(fopen('file.txt', 'r'););
]);
$completion = $client->chat()->createStreamed([
'model' => 'gpt-3.5-turbo',
'messages' => [
['role' => 'user', 'content' => 'Hello!'],
],
]);
expect($response->getIterator()->current())
->id->toBe('chatcmpl-6yo21W6LVo8Tw2yBf7aGf2g17IeIl');
After the requests have been sent there are various methods to ensure that the expected requests were sent:
// assert completion create request was sent
$client->assertSent(Completions::class, function (string $method, array $parameters): bool {
return $method === 'create' &&
$parameters['model'] === 'gpt-3.5-turbo-instruct' &&
$parameters['prompt'] === 'PHP is ';
});
// or
$client->completions()->assertSent(function (string $method, array $parameters): bool {
// ...
});
// assert 2 completion create requests were sent
$client->assertSent(Completions::class, 2);
// assert no completion create requests were sent
$client->assertNotSent(Completions::class);
// or
$client->completions()->assertNotSent();
// assert no requests were sent
$client->assertNothingSent();
To write tests expecting the API request to fail you can provide a Throwable
object as the response.
$client = new ClientFake([
new \OpenAI\Exceptions\ErrorException([
'message' => 'The model `gpt-1` does not exist',
'type' => 'invalid_request_error',
'code' => null,
])
]);
// the `ErrorException` will be thrown
$completion = $client->completions()->create([
'model' => 'gpt-3.5-turbo-instruct',
'prompt' => 'PHP is ',
]);
In order to use the Azure OpenAI Service, it is necessary to construct the client manually using the factory.
$client = OpenAI::factory()
->withBaseUri('{your-resource-name}.openai.azure.com/openai/deployments/{deployment-id}')
->withHttpHeader('api-key', '{your-api-key}')
->withQueryParam('api-version', '{version}')
->make();
To use Azure, you must deploy a model, identified by the {deployment-id}, which is already incorporated into the API calls. As a result, you do not have to provide the model during the calls since it is included in the BaseUri
.
Therefore, a basic sample completion call would be:
$result = $client->completions()->create([
'prompt' => 'PHP is'
]);
OpenAI PHP is an open-sourced software licensed under the MIT license.