Technical Analysis (TA) is the study of price movements.
This package aims to provide an extensible framework for working with various TA tools. This includes, but is not limited to: candlestick patterns, technical overlays, technical indicators, statistical analysis, and automated strategy backtesting.
The Technical Analysis Library is still in its early days, but already has the following:
- Recognition for Candlestick Patterns
- Technical indicators
- Technical overlays
- Moving averages (including adaptive)
- Automated backtests and strategies
- Tools for timeseries analysis
- Artificial data generation
- A highly extensible framework to create custom indicators, backtests, and strategies
Pypi link: https://pypi.org/project/technical-analysis/
pip install technical-analysis
This package assumes you're working with pandas dataframes. If you're not familiar with pandas, see the docs here https://pandas.pydata.org/docs/
Technical Overlays are indicators placed directly on a chart. These include moving averages and volatility bands.
>>> from technical_analysis import moving_average
>>> # simple moving average
>>> df["sma9"] = moving_average.sma(df.close, 9)
>>>
>>> # exponentially-weighted moving average
>>> df["ema9"] = moving_average.ema(df.close, period=9)
>>>
>>> # triangular moving average
>>> df["tma9"] = moving_average.tma(df.close, 9)
>>>
>>> # linearly-weighted moving average
>>> df["lwma9"] = moving_average.lwma(df.close, 9)
>>>
>>> # kaufman adaptive moving average
>>> df["kama9"] = moving_average.kama(df.close, 9, min_smoothing_constant=3, max_smoothing_constant=30)
>>>
>>> # wilder moving average
>>> df["wilder9"] = moving_average.wilder_ma(df.close, 9)
>>> from technical_analysis import overlays
>>> # bollinger bands
>>> df["bband_lower"], df["bband_upper"] = overlays.bbands(df.close, period=20)
>>>
>>> # donchian bands
>>> df["dband_lower"], df["dband_upper"] = overlays.dbands(df.close, period=20)
>>>
>>> # keltner bands
>>> df["kband_lower"], df["kband_upper"] = overlays.kbands(df.high, df.low, df.close, period=20)
>>> from technical_analysis import indicators
>>> # average true range
>>> df["atr"] = indicators.atr(df.high, df.low, df.close, period=14)
>>>
>>> # relative strength index
>>> df["rsi"] = indicators.rsi(df.close, period=14)
>>>
>>> # Williams' %R
>>> df["perc_r"] = indicators.perc_r(df.high, df.low, df.close, period=14)
>>>
>>> # true strength index
>>> df["tsi"] = indicators.tsi(df.close, period1=25, period2=13)
>>>
>>> # TRIX
>>> df["trix"] = indicators.trix(df.close, period=15)
>>>
>>> # stochastic %k, %d (fast, slow, or full)
>>> df["stoch_k"], df["stoch_d"] = indicators.stochastic(df.high, df.low, df.close, period=14, perc_k_smoothing=3)
>>>
>>> # macd histogram
>>> df["macd_histogram"] = indicators.macd(df.close, return_histogram=True)
>>> from technical_analysis import candles
>>> df["gap_down"] = candles.is_gap_down(df.high, df.low, min_gap_size=0.003)
>>> df["gap_up"] = candles.is_gap_down(df.high, df.low, min_gap_size=0.003)
>>> df["long_body"] = candles.is_long_body(df.open, df.high, df.low, df.close, min_body_size=0.7)
>>> df["doji"] = candles.is_doji(df.open, df.high, df.low, df.close, relative_threshold=0.1)
>>> df["outside"] = candles.is_outside(df.high, df.low)
>>> df["inside"] = candles.is_inside(df.high, df.low)
>>> df["spinning_top"] = candles.spinning_top(df.open, df.high, df.low, df.close)
>>> df["marubozu"] = candles.is_marubozu(df.open, df.high, df.low, df.close, max_shadow_size=0.2)
>>> df["bullish_engulfing"] = candles.bullish_engulfing(df.open, df.high, df.low, df.close)
>>> df["bearish_engulfing"] = candles.bearish_engulfing(df.open, df.high, df.low, df.close)
The technical-analysis library comes with an extensible framework to backtest trading strategies.
>>> from technical_analysis.backtest import Backtest
>>> from technical_analysis.backtest.strategy import MovingAverageCrossover
>>> from technical_analysis import overlays
>>>
>>> # test an exponential moving average crossover strategy
>>> df["ema9"] = overlays.ema(df.close, period=9)
>>> df["ema20"] = overlays.ema(df.close, period=20)
>>> df = df.dropna().reset_index(drop=True)
>>> entry_criteria=[MovingAverageCrossover("ema9", "ema20", "bullish")]
>>> exit_criteria=[MovingAverageCrossover("ema9", "ema20", "bearish")]
>>> backtest = Backtest(entry_criteria, exit_criteria, max_positions=1, use_next_open=True)
>>> backtest.run(df)
>>> backtest.results
{'benchmark': 3.925821463626707,
'strategy': 1.2970321301363634,
'max_drawdown': -0.10934780434803487,
'max_profit': 0.20020259422562683,
'avg_return': 0.015817465001662968,
'std_return': 0.057687131745236445,
'returns': [0.01751003732275545, ...]}
The technical-analysis library comes with useful timeseries analysis tools.
>>> from technical_analysis.stats import autocorr_coef, period
>>> # auto-correlation
>>> corr = autocorr_coef(df.close.pct_change())
>>> np.argsort(corr)[::-1][:10]
array([199, 62, 72, 71, 70, 69, 68, 67, 66, 65])
>>>
>>> # periodicity
>>> period(df.close, top_n=10)
array([ 1, 2, 5, 4, 3, 7, 16, 10, 25, 38])
>>>
>>> # hurst exponent
>>> hurst_exp(df.close)
0.3238867311092554