Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Report histogram metrics to Triton metrics server #56

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 30 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@ you need to specify a different `shm-region-prefix-name` for each server. See
for more information.

## Triton Metrics
Starting with the 24.08 release of Triton, users can now obtain partial
Starting with the 24.08 release of Triton, users can now obtain specific
vLLM metrics by querying the Triton metrics endpoint (see complete vLLM metrics
[here](https://docs.vllm.ai/en/latest/serving/metrics.html)). This can be
accomplished by launching a Triton server in any of the ways described above
Expand All @@ -213,16 +213,42 @@ the following:
```bash
curl localhost:8002/metrics
```
VLLM stats are reported by the metrics endpoint in fields that
are prefixed with `vllm:`. Your output for these fields should look
similar to the following:
VLLM stats are reported by the metrics endpoint in fields that are prefixed with
`vllm:`. Triton currently supports reporting of the following metrics from vLLM.
```bash
# Number of prefill tokens processed.
counter_prompt_tokens
# Number of generation tokens processed.
counter_generation_tokens
# Histogram of time to first token in seconds.
histogram_time_to_first_token
# Histogram of time per output token in seconds.
histogram_time_per_output_token
```
Your output for these fields should look similar to the following:
```bash
# HELP vllm:prompt_tokens_total Number of prefill tokens processed.
# TYPE vllm:prompt_tokens_total counter
vllm:prompt_tokens_total{model="vllm_model",version="1"} 10
# HELP vllm:generation_tokens_total Number of generation tokens processed.
# TYPE vllm:generation_tokens_total counter
vllm:generation_tokens_total{model="vllm_model",version="1"} 16
# HELP vllm:time_to_first_token_seconds Histogram of time to first token in seconds.
# TYPE vllm:time_to_first_token_seconds histogram
vllm:time_to_first_token_seconds_count{model="vllm_model",version="1"} 1
vllm:time_to_first_token_seconds_sum{model="vllm_model",version="1"} 0.03233122825622559
vllm:time_to_first_token_seconds_bucket{model="vllm_model",version="1",le="0.001"} 0
vllm:time_to_first_token_seconds_bucket{model="vllm_model",version="1",le="0.005"} 0
...
vllm:time_to_first_token_seconds_bucket{model="vllm_model",version="1",le="+Inf"} 1
# HELP vllm:time_per_output_token_seconds Histogram of time per output token in seconds.
# TYPE vllm:time_per_output_token_seconds histogram
vllm:time_per_output_token_seconds_count{model="vllm_model",version="1"} 15
vllm:time_per_output_token_seconds_sum{model="vllm_model",version="1"} 0.04501533508300781
vllm:time_per_output_token_seconds_bucket{model="vllm_model",version="1",le="0.01"} 14
vllm:time_per_output_token_seconds_bucket{model="vllm_model",version="1",le="0.025"} 15
...
vllm:time_per_output_token_seconds_bucket{model="vllm_model",version="1",le="+Inf"} 15
```
To enable vLLM engine colleting metrics, "disable_log_stats" option need to be either false
or left empty (false by default) in [model.json](https://github.com/triton-inference-server/vllm_backend/blob/main/samples/model_repository/vllm_model/1/model.json).
Expand Down
9 changes: 9 additions & 0 deletions ci/L0_backend_vllm/metrics_test/vllm_metrics_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,15 @@
# vllm:generation_tokens_total
self.assertEqual(metrics_dict["vllm:generation_tokens_total"], 48)

# vllm:time_to_first_token_seconds
self.assertEqual(metrics_dict["vllm:time_to_first_token_seconds_count"], 3)
self.assertTrue(metrics_dict["vllm:time_to_first_token_seconds_sum"] > 0)

Check notice

Code scanning / CodeQL

Imprecise assert Note

assertTrue(a > b) cannot provide an informative message. Using assertGreater(a, b) instead will give more informative messages.
self.assertEqual(metrics_dict["vllm:time_to_first_token_seconds_bucket"], 3)
# vllm:time_per_output_token_seconds
self.assertEqual(metrics_dict["vllm:time_per_output_token_seconds_count"], 45)
self.assertTrue(metrics_dict["vllm:time_per_output_token_seconds_sum"] > 0)

Check notice

Code scanning / CodeQL

Imprecise assert Note

assertTrue(a > b) cannot provide an informative message. Using assertGreater(a, b) instead will give more informative messages.
self.assertEqual(metrics_dict["vllm:time_per_output_token_seconds_bucket"], 45)

def test_vllm_metrics_disabled(self):
# Test vLLM metrics
self.vllm_infer(
Expand Down
77 changes: 76 additions & 1 deletion src/utils/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from typing import Dict, Union
from typing import Dict, List, Union

import triton_python_backend_utils as pb_utils
from vllm.engine.metrics import StatLoggerBase as VllmStatLoggerBase
Expand All @@ -46,6 +46,16 @@ def __init__(self, labels):
description="Number of generation tokens processed.",
kind=pb_utils.MetricFamily.COUNTER,
)
self.histogram_time_to_first_token_family = pb_utils.MetricFamily(
name="vllm:time_to_first_token_seconds",
description="Histogram of time to first token in seconds.",
kind=pb_utils.MetricFamily.HISTOGRAM,
)
self.histogram_time_per_output_token_family = pb_utils.MetricFamily(
name="vllm:time_per_output_token_seconds",
description="Histogram of time per output token in seconds.",
kind=pb_utils.MetricFamily.HISTOGRAM,
)

# Initialize metrics
# Iteration stats
Expand All @@ -55,6 +65,51 @@ def __init__(self, labels):
self.counter_generation_tokens = self.counter_generation_tokens_family.Metric(
labels=labels
)
# Use the same bucket boundaries from vLLM sample metrics.
# https://github.com/vllm-project/vllm/blob/21313e09e3f9448817016290da20d0db1adf3664/vllm/engine/metrics.py#L81-L96
self.histogram_time_to_first_token = (
self.histogram_time_to_first_token_family.Metric(
labels=labels,
buckets=[
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Buckets here are just example from vLLM repo metrics.py. I think we want to let user define the interval buckets. Also good for the unittest since data observed are pretty small when prompts are simply. What is the best practice to allow customizable buckets?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@oandreeva-nv Explanation to comment.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think, if we ship utils/metrics.py as a part of a supported backend, we need to ship a defined set of buckets anyways, at least as a default. Since we ship this as a python script, users can always adjust it on their side. Since these values correspond to vllm side of things, I think it worth adding a comment about it with a permalink, so that we could easily refer to the original source and adjust

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Updated

0.001,
0.005,
0.01,
0.02,
0.04,
0.06,
0.08,
0.1,
0.25,
0.5,
0.75,
1.0,
2.5,
5.0,
7.5,
10.0,
oandreeva-nv marked this conversation as resolved.
Show resolved Hide resolved
],
)
)
self.histogram_time_per_output_token = (
self.histogram_time_per_output_token_family.Metric(
labels=labels,
buckets=[
0.01,
0.025,
0.05,
0.075,
0.1,
0.15,
0.2,
0.3,
0.4,
0.5,
0.75,
1.0,
2.5,
],
)
)


class VllmStatLogger(VllmStatLoggerBase):
Expand Down Expand Up @@ -82,6 +137,19 @@ def _log_counter(self, counter, data: Union[int, float]) -> None:
if data != 0:
counter.increment(data)

def _log_histogram(self, histogram, data: Union[List[int], List[float]]) -> None:
"""Convenience function for logging list to histogram.
Args:
histogram: A histogram metric instance.
data: A list of int or float data to observe into the histogram metric.
Returns:
None
"""
for datum in data:
histogram.observe(datum)

def log(self, stats: VllmStats) -> None:
"""Report stats to Triton metrics server.
Expand All @@ -97,3 +165,10 @@ def log(self, stats: VllmStats) -> None:
self._log_counter(
self.metrics.counter_generation_tokens, stats.num_generation_tokens_iter
)
self._log_histogram(
self.metrics.histogram_time_to_first_token, stats.time_to_first_tokens_iter
)
self._log_histogram(
self.metrics.histogram_time_per_output_token,
stats.time_per_output_tokens_iter,
)
Loading