EasyPreProcessing is a Python module that comprises of data pre-processing helper functions mainly for the purpose of data science and machine learning.
Many of the common machine learning activities that are performed during the Feature Engineering can be performed in a single line of code using this library.
- Handling missing values
- Encoding categorical variables
- Handling DateTime features
- Handling empty/blank columns
- Display correlation metrics
- Standardize dataset
- Over sampling
- Clustering (KMeans)
Just a simple
pip install easypreprocessing
For details regarding all the functionality available:
from easypreprocessing import EasyPreProcessing
prep = EasyPreProcessing('filename.csv')
prep.info()
Below you can see a sample code of preprocessing using this library.
from easypreprocessing import EasyPreProcessing
prep = EasyPreProcessing('filename_here.csv')
prep.output = 'output_variable_here'
prep.remove_blank() #Remove blank or empty columns
prep.missing_values #Display missing values
prep.categorical.impute() #Fill missing values for categorical variables
prep.numerical.impute() #Fill missing values for numerical variables
prep.categorical.encode() #Convert categorical features to numerical
prep.standardize() #Standardize dataset
X_train, X_test, y_train, y_test = prep.split()