Skip to content

GeoInsight Pro is an advanced geospatial AI application designed to revolutionize satellite imagery analysis using cutting-edge technologies like Streamlit and Groq API.

License

Notifications You must be signed in to change notification settings

tushar2704/GeoInsight

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GeoInsight Pro: Satellite AI Analysis Platform

Overview

GeoInsight Pro is an advanced geospatial AI application designed to revolutionize satellite imagery analysis using cutting-edge technologies like Streamlit and Groq API.

πŸš€ Features

Key Capabilities

  • Satellite Image Classification
  • Climate Change Visualization
  • Environmental Impact Assessment
  • AI-Powered Geospatial Analysis

πŸ›  Technology Stack

  • Frontend: Streamlit
  • AI Processing: Groq API
  • Data Visualization: Plotly
  • Image Processing: OpenCV, PIL
  • Machine Learning: scikit-learn, TensorFlow

Prerequisites

System Requirements

  • Python 3.8+
  • pip
  • Virtual Environment (recommended)

API Keys Required

  • Groq API Key
  • (Optional) Additional geospatial data service keys

Installation Steps

1. Clone Repository

git clone https://github.com/tushar2704/geoinsight.git
cd geoinsight-pro

2. Create Virtual Environment

python -m venv venv
source venv/bin/activate  # On Windows use `venv\Scripts\activate`

3. Install Dependencies

pip install -r requirements.txt

4. Configure Environment Variables

Create a .env file in project root:

GROQ_API_KEY=your_groq_api_key

Configuration

Configuration File: config.yaml

app:
  name: GeoInsight Pro
  version: 0.1.0

modules:
  image_classification: true
  climate_analysis: true
  environmental_impact: true

api:
  groq:
    model: llama2-70b-4096
    max_tokens: 1024

logging:
  level: INFO
  file: logs/app.log

Running the Application

Development Mode

streamlit run app.py

Production Deployment

# Recommended: Use Streamlit sharing or cloud platforms
streamlit run app.py --server.port 8501

Docker Deployment

Dockerfile

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install -r requirements.txt

COPY . .

EXPOSE 8501

CMD ["streamlit", "run", "Home.py"]

Build and Run Docker

docker build -t geoinsight-pro .
docker run -p 8501:8501 geoinsight-pro

Project Structure

geoinsight-pro/
β”‚
β”œβ”€β”€ app.py               # Main Streamlit application
β”œβ”€β”€ requirements.txt     # Project dependencies
β”œβ”€β”€ config.yaml          # Configuration management
β”‚
β”œβ”€β”€ modules/
β”‚   β”œβ”€β”€ image_processing.py
β”‚   β”œβ”€β”€ ai_analysis.py
β”‚   └── visualization.py
β”‚
β”œβ”€β”€ data/                # Sample datasets
β”‚   └── satellite_images/
β”‚
β”œβ”€β”€ models/              # ML model artifacts
β”‚   └── trained_models/
β”‚
└── tests/               # Unit and integration tests
    β”œβ”€β”€ test_image_processing.py
    └── test_ai_analysis.py

Usage Examples

Basic Image Classification

# Example usage in Streamlit app
uploaded_file = st.file_uploader("Upload Satellite Image")
if uploaded_file:
    result = analyze_image(uploaded_file)
    st.write(result)

Contributing

Contribution Guidelines

  1. Fork the repository
  2. Create feature branch
  3. Commit changes
  4. Push to branch
  5. Create pull request

Code Style

  • Follow PEP 8 guidelines
  • Use type hints
  • Write comprehensive docstrings

Ethical Considerations

  • Respect geographical data privacy
  • Obtain proper image rights
  • Ensure transparent AI decision-making

Limitations

  • Dependent on satellite image quality
  • AI model accuracy varies
  • Computational resource intensive

Future Roadmap

  • Multi-language support
  • Enhanced ML models
  • Real-time data streaming
  • Advanced visualization techniques

License

MIT License

Contact


Disclaimer: This is a demonstration project for educational purposes.

About

GeoInsight Pro is an advanced geospatial AI application designed to revolutionize satellite imagery analysis using cutting-edge technologies like Streamlit and Groq API.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published