GeoInsight Pro is an advanced geospatial AI application designed to revolutionize satellite imagery analysis using cutting-edge technologies like Streamlit and Groq API.
- Satellite Image Classification
- Climate Change Visualization
- Environmental Impact Assessment
- AI-Powered Geospatial Analysis
- Frontend: Streamlit
- AI Processing: Groq API
- Data Visualization: Plotly
- Image Processing: OpenCV, PIL
- Machine Learning: scikit-learn, TensorFlow
- Python 3.8+
- pip
- Virtual Environment (recommended)
- Groq API Key
- (Optional) Additional geospatial data service keys
git clone https://github.com/tushar2704/geoinsight.git
cd geoinsight-pro
python -m venv venv
source venv/bin/activate # On Windows use `venv\Scripts\activate`
pip install -r requirements.txt
Create a .env
file in project root:
GROQ_API_KEY=your_groq_api_key
app:
name: GeoInsight Pro
version: 0.1.0
modules:
image_classification: true
climate_analysis: true
environmental_impact: true
api:
groq:
model: llama2-70b-4096
max_tokens: 1024
logging:
level: INFO
file: logs/app.log
streamlit run app.py
# Recommended: Use Streamlit sharing or cloud platforms
streamlit run app.py --server.port 8501
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
EXPOSE 8501
CMD ["streamlit", "run", "Home.py"]
docker build -t geoinsight-pro .
docker run -p 8501:8501 geoinsight-pro
geoinsight-pro/
β
βββ app.py # Main Streamlit application
βββ requirements.txt # Project dependencies
βββ config.yaml # Configuration management
β
βββ modules/
β βββ image_processing.py
β βββ ai_analysis.py
β βββ visualization.py
β
βββ data/ # Sample datasets
β βββ satellite_images/
β
βββ models/ # ML model artifacts
β βββ trained_models/
β
βββ tests/ # Unit and integration tests
βββ test_image_processing.py
βββ test_ai_analysis.py
# Example usage in Streamlit app
uploaded_file = st.file_uploader("Upload Satellite Image")
if uploaded_file:
result = analyze_image(uploaded_file)
st.write(result)
- Fork the repository
- Create feature branch
- Commit changes
- Push to branch
- Create pull request
- Follow PEP 8 guidelines
- Use type hints
- Write comprehensive docstrings
- Respect geographical data privacy
- Obtain proper image rights
- Ensure transparent AI decision-making
- Dependent on satellite image quality
- AI model accuracy varies
- Computational resource intensive
- Multi-language support
- Enhanced ML models
- Real-time data streaming
- Advanced visualization techniques
MIT License
- Project Maintainer: Tushar Aggarwal
Disclaimer: This is a demonstration project for educational purposes.