Releases: unageek/graphest
Releases Β· unageek/graphest
1.3.3
Downloads
Changes
- Fixed an issue where explicit relations of the form
f(x) op y
andf(y) op x
(but noty op x
) were interpreted inversely. π- For example,
x < y
andsin(y) β₯ x
were interpreted asx > y
andsin(y) β€ x
, respectively.
- For example,
v1.3.2
Downloads
Changes
- Fixed an issue where relations of the form
β¦ || β¦ || β¦
were not plotted. π
1.3.1
Downloads
Changes
- Fixed an issue where relations involving absolute values
|x|
were sometimes not plotted. π - Fixed an issue where relations involving expressions of the form
sin(x) / x
orx / sin(x)
were not plotted whenx
is a complex-valued expression. π - Added the complex version of the sinc function
sinc(x)
. β¨ - Added the complex version of the Riemann zeta function
zeta(x)
/ΞΆ(x)
. β¨
Gallery
y = Re(atanh(x + i tanh(n/20)))
x + i y = ΞΆ(1/2 + i t) β§ 0 β€ t β€ 50
v1.3.0
Downloads
Changes
- Now you can customize the colors of the graph background and the axes and grids. π¨
- Added support for dark mode. π
- Fixed an issue where zoom level 512 was permitted in the Go To dialog, which led the app to go blank. π
Gallery
y = log(2, gcd(x, 1))
v1.2.3
Downloads
Changes
- Fixed an issue where some parametric relations were plotted incorrectly. π
Gallery
x = mod(t, 1) β§ y = C(t)
v1.2.2
Downloads
Changes
- Fixed an issue where Graphest does not start after installation without an internet connection. π
Gallery
βΞΈβ < r < β2ΞΈβ + 1 β§ r > 0
x = 1 / m β§ y = 1 / n
v1.2.1
Downloads
Changes
- Eliminated insignificant artifacts on tile edges of exported images.
- Now plotting a point relation like
x = Ο β§ y = e
completes. - Improved performance of the digamma function
psi(x)
.
v1.2.0
Downloads
Changes
- Significantly sped up image export by parallelization. π
- Various improvements and tweaks to image export: β¨
- Added higher anti-aliasing levels.
- Increased the default per-tile timeout to ten seconds.
- Assigned a keyboard shortcut: β+Shift+E on macOS or Ctrl+Shift+E on Windows.
- Implemented optional correct alpha composition.
- The option enables alpha composition in linear color space instead of sRGB.
- Added the log-gamma function
lnGamma(x)
orlnΞ(x)
on real numbers. β¨
Gallery
High-quality rendering of the cover image
x/y < cos(x) sin(y)
v1.1.0
Downloads
Changes
- Significantly improved the performance of plotting relations involving
if
expressions. π - Add Transparent background option to image export. π§
- Fixed an issue where parametric relations with
if
expressions may not be plotted. π - Fixed an issue where long relations may not be plotted on Windows. π
Gallery
owl curve
x = β1/2 sin(1/3 β 140 t) β sin(15/14 β 122 t)/4 β sin(3/4 β 121 t)/6 β sin(5/11 β 119 t)/7 β (7 sin(5/8 β 116 t))/13 β sin(5/7 β 113 t)/3 β (13 sin(30/29 β 112 t))/14 β (2 sin(3/8 β 107 t))/5 β (3 sin(3/5 β 103 t))/10 β (2 sin(4/5 β 101 t))/9 β (4 sin(1/5 β 94 t))/9 β (3 sin(11/10 β 93 t))/2 β (2 sin(11/10 β 89 t))/3 β (5 sin(1 β 87 t))/6 β (13 sin(29/30 β 83 t))/10 β (2 sin(1/10 β 82 t))/9 β (8 sin(6/7 β 79 t))/9 β (2 sin(23/22 β 77 t))/7 β (10 sin(1/28 β 74 t))/9 β (19 sin(18/17 β 64 t))/7 β sin(4/7 β 63 t)/3 β (11 sin(7/13 β 60 t))/7 β (2 sin(15/11 β 59 t))/7 β (7 sin(3/5 β 55 t))/3 β sin(6/7 β 50 t)/4 β (25 sin(11/7 β 47 t))/6 β (45 sin(5/6 β 46 t))/13 β (9 sin(7/5 β 45 t))/7 β (7 sin(6/5 β 40 t))/2 β (29 sin(7/6 β 39 t))/8 β (21 sin(1/2 β 33 t))/4 β (44 sin(1/8 β 32 t))/15 β (69 sin(4/5 β 26 t))/17 β (283 sin(11/8 β 19 t))/9 β (481 sin(3/7 β 17 t))/20 β (71 sin(1/2 β 7 t))/5 β (219 sin(2/3 β 5 t))/8 + (167 sin(18 t))/8 + (4061 sin(5/8 + t))/5 + (1888 sin(2/5 + 2 t))/7 + (1052 sin(3/2 + 3 t))/13 + (749 sin(7/5 + 4 t))/10 + (342 sin(13/9 + 6 t))/5 + (503 sin(3/7 + 8 t))/7 + (242 sin(51/11 + 9 t))/5 + (155 sin(37/8 + 10 t))/4 + (166 sin(44/15 + 11 t))/5 + (254 sin(9/8 + 12 t))/11 + (146 sin(5/9 + 13 t))/5 + (58 sin(18/11 + 14 t))/9 + (469 sin(9/10 + 15 t))/36 + (8 sin(29/8 + 16 t))/3 + (171 sin(35/8 + 20 t))/10 + (227 sin(35/8 + 21 t))/11 + (92 sin(17/6 + 22 t))/9 + (8 sin(23/7 + 23 t))/5 + (247 sin(46/15 + 24 t))/15 + (47 sin(7/5 + 25 t))/6 + (23 sin(11/3 + 27 t))/6 + (61 sin(12/5 + 28 t))/5 + (138 sin(3 + 29 t))/11 + (77 sin(13/6 + 30 t))/6 + (16 sin(7/10 + 31 t))/3 + (13 sin(1/6 + 34 t))/3 + (6 sin(40/13 + 35 t))/5 + (13 sin(7/10 + 36 t))/5 + (26 sin(5/11 + 37 t))/9 + (18 sin(11/5 + 38 t))/5 + (22 sin(22/7 + 41 t))/9 + (25 sin(23/9 + 42 t))/6 + (4 sin(28/11 + 43 t))/5 + (29 sin(1 + 44 t))/7 + (10 sin(47/10 + 48 t))/9 + (17 sin(30/7 + 49 t))/8 + sin(41/21 + 51 t) + (6 sin(21/5 + 52 t))/5 + (8 sin(23/5 + 53 t))/5 + (28 sin(13/14 + 54 t))/11 + sin(21/5 + 56 t)/2 + (22 sin(29/9 + 57 t))/7 + (9 sin(43/22 + 58 t))/7 + (22 sin(5/9 + 61 t))/15 + (5 sin(17/5 + 62 t))/8 + (11 sin(18/7 + 65 t))/8 + (17 sin(13/7 + 66 t))/6 + (12 sin(8/5 + 67 t))/7 + sin(20/9 + 68 t) + (3 sin(7/2 + 69 t))/4 + (12 sin(12/7 + 70 t))/11 + (19 sin(2 + 71 t))/13 + (13 sin(35/17 + 72 t))/6 + (38 sin(2/5 + 73 t))/15 + (6 sin(2/5 + 75 t))/5 + (11 sin(41/10 + 76 t))/9 + (7 sin(15/7 + 78 t))/5 + (4 sin(75/19 + 80 t))/5 + (9 sin(4 + 81 t))/10 + (5 sin(4 + 84 t))/4 + (11 sin(61/20 + 85 t))/12 + (28 sin(2/5 + 86 t))/29 + (11 sin(22/7 + 88 t))/12 + (4 sin(26/7 + 90 t))/7 + (10 sin(3/10 + 91 t))/11 + (21 sin(5/7 + 92 t))/20 + (25 sin(8/3 + 95 t))/24 + sin(19/8 + 96 t) + (2 sin(23/6 + 97 t))/7 + sin(7/6 + 98 t)/3 + (6 sin(14/9 + 99 t))/7 + (4 sin(8/9 + 100 t))/7 + sin(15/7 + 102 t)/6 + (2 sin(1/8 + 104 t))/5 + (3 sin(57/14 + 105 t))/5 + (2 sin(5/7 + 106 t))/5 + (2 sin(28/11 + 108 t))/3 + (3 sin(19/5 + 109 t))/7 + (4 sin(85/21 + 110 t))/7 + (9 sin(3/8 + 111 t))/10 + (6 sin(23/12 + 114 t))/11 + (11 sin(1/3 + 115 t))/10 + sin(133/44 + 117 t)/7 + (4 sin(1/7 + 118 t))/9 + (2 sin(1/7 + 120 t))/7 + (2 sin(32/7 + 123 t))/5 + sin(2/3 + 124 t)/4 + (5 sin(21/8 + 125 t))/7 + sin(25/9 + 126 t) + (2 sin(4/7 + 127 t))/7 + sin(14/15 + 128 t)/2 + (3 sin(17/5 + 129 t))/7 + sin(12/5 + 130 t)/5 + sin(26/7 + 131 t)/3 + sin(11/8 + 132 t)/6 + sin(13/6 + 133 t)/4 + (2 sin(7/9 + 134 t))/5 + (3 sin(25/8 + 135 t))/7 + sin(22/5 + 136 t)/4 + (4 sin(4 + 137 t))/7 + (5 sin(8/3 + 138 t))/7 + (2 sin(14/3 + 139 t))/5 && y = β1/7 sin(10/7 β 140 t) β (4 sin(3/7 β 135 t))/7 β sin(7/8 β 133 t)/6 β (3 sin(4/5 β 132 t))/8 β sin(5/9 β 129 t)/3 β (3 sin(23/15 β 120 t))/7 β (4 sin(11/9 β 117 t))/7 β (13 sin(1/18 β 116 t))/14 β (23 sin(1/9 β 114 t))/24 β (7 sin(8/7 β 112 t))/13 β (3 sin(6/7 β 109 t))/5 β (3 sin(12/11 β 108 t))/8 β (9 sin(14/9 β 105 t))/10 β (21 sin(13/10 β 104 t))/22 β (13 sin(1/5 β 87 t))/7 β (13 sin(1/11 β 85 t))/8 β (4 sin(5/6 β 84 t))/3 β sin(3/2 β 83 t) β (3 sin(7/5 β 80 t))/8 β (11 sin(4/5 β 79 t))/9 β (17 sin(11/8 β 78 t))/11 β (11 sin(4/3 β 74 t))/6 β sin(15/11 β 71 t)/2 β sin(7/10 β 64 t)/2 β (7 sin(10/7 β 58 t))/4 β (12 sin(4/3 β 54 t))/5 β (16 sin(5/4 β 50 t))/7 β (23 sin(1/5 β 44 t))/8 β (25 sin(7/6 β 43 t))/7 β (23 sin(27/26 β 39 t))/3 β (9 sin(5/8 β 38 t))/10 β (50 sin(3/2 β 35 t))/11 β (33 sin(2/5 β 33 t))/7 β (505 sin(1/14 β 23 t))/42 β (143 sin(1/13 β 21 t))/6 β (54 sin(3/5 β 20 t))/5 β (35 sin(28/27 β 19 t))/3 β (78 sin(4/5 β 16 t))/5 β (1618 sin(7/5 β 14 t))/49 β (215 sin(10/7 β 9 t))/4 β (530 sin(1/5 β 7 t))/7 β (1604 sin(11/8 β t))/3 + (91 sin(59 t))/18 + (431 sin(8/9 + 2 t))/4 + (1981 sin(10/3 + 3 t))/9 + (1041 sin(9/10 + 4 t))/5 + (1177 sin(15/4 + 5 t))/8 + (1925 sin(15/4 + 6 t))/13 + (101 sin(6/5 + 8 t))/2 + (217 sin(12/7 + 10 t))/6 + (129 sin(5/3 + 11 t))/10 + (505 sin(13/5 + 12 t))/9 + (182 sin(73/18 + 13 t))/11 + (146 sin(17/6 + 15 t))/5 + 20 sin(25/9 + 17 t) + (119 sin(7/4 + 18 t))/20 + (643 sin(19/6 + 22 t))/28 + (57 sin(19/5 + 24 t))/10 + (32 sin(12/7 + 25 t))/3 + (148 sin(16/9 + 26 t))/11 + (56 sin(59/15 + 27 t))/9 + (17 sin(8/3 + 28 t))/5 + (82 sin(9/2 + 29 t))/11 + (22 sin(11/9 + 30 t))/3 + (61 sin(13/3 + 31 t))/7 + 10 sin(22/7 + 32 t) + 5 sin(27/8 + 34 t) + (84 sin(4/5 + 36 t))/13 + (12 sin(40/13 + 37 t))/5 + (19 sin(7/8 + 40 t))/2 + (22 sin(7/3 + 41 t))/7 + (2 sin(11/4 + 42 t))/3 + (5 sin(59/15 + 45 t))/4 + (19 sin(2 + 46 t))/8 + (9 sin(41/10 + 47 t))/4 + (25 sin(10/7 + 48 t))/7 + (3 sin(22/9 + 49 t))/5 + (73 sin(47/12 + 51 t))/36 + (17 sin(2/3 + 52 t))/6 + (27 sin(7/2 + 53 t))/7 + (22 sin(17/10 + 55 t))/9 + (9 sin(5/3 + 56 t))/4 + (7 sin(22/7 + 57 t))/2 + (29 sin(5/7 + 60 t))/9 + (16 sin(21/8 + 61 t))/9 + (11 sin(8/3 + 62 t))/5 + (23 sin(1/8 + 63 t))/8 + (5 sin(13/5 + 65 t))/2 + (13 sin(5/8 + 66 t))/6 + (18 sin(35/12 + 67 t))/17 + (25 sin(33/16 + 68 t))/9 + (24 sin(17/6 + 69 t))/23 + (16 sin(23/8 + 70 t))/7 + (17 sin(18/7 + 72 t))/11 + (26 sin(9/5 + 73 t))/25 + (4 sin(10/3 + 75 t))/5 + (15 sin(13/5 + 76 t))/8 + (16 sin(15/4 + 77 t))/7 + (7 sin(4/7 + 81 t))/6 + (5 sin(19/8 + 82 t))/4 + (7 sin(17/9 + 86 t))/11 + (3 sin(3/8 + 88 t))/2 + (4 sin(18/11 + 89 t))/5 + (8 sin(7/4 + 90 t))/7 + sin(11/6 + 91 t)/5 + (4 sin(3/2 + 92 t))/5 + (51 sin(3/4 + 93 t))/26 + (11 sin(16/11 + 94 t))/9 + (4 sin(16/7 + 95 t))/5 + (9 sin(8/5 + 96 t))/7 + (2 sin(1/3 + 97 t))/7 + (8 sin(139/46 + 98 t))/5 + (3 sin(49/11 + 99 t))/4 + (2 sin(9/4 + 100 t))/5 + (5 sin(11/10 + 101 t))/8 + sin(16/7 + 102 t)/3 + (10 sin(51/13 + 103 t))/11 + (2 sin(15/11 + 106 t))/7 + (8 sin(51/11 + 107 t))/9 + sin(11/3 + 110 t)/2 + (3 sin(38/9 + 111 t))/8 + (7 sin(50/11 + 113 t))/13 + (10 sin(27/14 + 115 t))/11 + (3 sin(16/11 + 118 t))/7 + sin(33/17 + 119 t)/7 + sin(5/6 + 121 t)/3 + (3 sin(19/11 + 122 t))/5 + (7 sin(23/15 + 123 t))/9 + sin(13/4 + 124 t)/4 + (4 sin(39/10 + 125 t))/7 + (5 sin(1/2 + 126 t))/8 + (2 sin(82/27 + 127 t))/9 + (5 sin(26/7 + 128 t))/9 + sin(6/7 + 130 t)/3 + sin(7/3 + 131 t)/4 + (2 sin(25/11 + 134 t))/7 + sin(4/7 + 136 t)/5 + (4 sin(31/30 + 137 t))/9 + (2 sin(15/16 + 138 t))/5 + sin(25/9 + 139 t)/9 && 0 β€ t β€ 2 pi
Click to copy the relation ββ
Japanese "math" character curve
x = if(sqrt(sgn(sin(t/2))) < 0, 0, 1) (if(7 pi - t < 0, 0, 1) if(-3 pi + t < 0, 0, 1) (-2413/25 - (16 sin(3/2 - 7 t))/9 - (19 sin(7/11 - 2 t))/5 - (801 sin(5/12 - t))/8 + (237 sin(9/7 + 3 t))/14 + (5 sin(37/10 + 4 t))/8 + (38 sin(25/9 + 5 t))/7 + (9 sin(53/12 + 6 t))/14) + if(11 pi - t < 0, 0, 1) if(-7 pi + t < 0, 0, 1) (3395/8 - (3 sin(4/7 - 15 t))/7 - (11 sin(3/4 - 12 t))/14 - (2 sin(5/7 - 9 t))/3 - (4 sin(22/15 - 5 t))/5 + (2259 sin(1/4 + t))/14 + (529 sin(25/7 + 2 t))/13 + (181 sin(5/8 + 3 t))/9 + (13 sin(31/8 + 4 t))/3 + (42 sin(7/5 + 6 t))/11 + (25 sin(33/7 + 7 t))/8 + (30 sin(11/6 + 8 t))/13 + (4 sin(61/14 + 10 t))/9 + (27 sin(17/8 + 11 t))/26 + (7 sin(25/8 + 13 t))/13 + sin(23/10 + 14 t)/7) + if(27 pi - t < 0, 0, 1) if(-23 pi + t < 0, 0, 1) (-7039/11 - (6 sin(10/9 - 11 t))/5 - (146 sin(8/11 - 3 t))/9 + (1117 sin(31/30 + t))/12 + (7 sin(9/4 + 2 t))/2 + (28 sin(104/35 + 4 t))/29 + (23 sin(32/9 + 5 t))/5 + (5 sin(7/10 + 6 t))/12 + (17 sin(19/9 + 7 t))/12 + sin(47/14 + 8 t)/8 + (13 sin(3/4 + 9 t))/8 + (3 sin(29/7 + 10 t))/11 + sin(43/16 + 12 t)/4 + (5 sin(24/7 + 13 t))/11 + sin(16/13 + 14 t)/14 + (5 sin(20/9 + 15 t))/13) + if(23 pi - t < 0, 0, 1) if(-19 pi + t < 0, 0, 1) (-3017/8 - (2 sin(16/15 - 17 t))/5 - (2 sin(7/6 - 13 t))/7 + (1017 sin(2/5 + t))/7 + (103 sin(27/8 + 2 t))/9 + (219 sin(35/11 + 3 t))/19 + (36 sin(1/7 + 4 t))/13 + (22 sin(5/7 + 5 t))/5 + 4 sin(18/5 + 6 t) + (8 sin(47/13 + 7 t))/11 + (13 sin(13/14 + 8 t))/11 + (9 sin(5/6 + 9 t))/17 + (7 sin(35/9 + 10 t))/4 + (2 sin(8/15 + 11 t))/5 + (5 sin(13/8 + 12 t))/8 + (2 sin(117/29 + 14 t))/3 + sin(9/10 + 15 t)/2 + sin(19...
v1.0.0
Downloads
Changes
- Now you can save/open graphs. πΎ
- Now pen sizes are applied to not only exported images but also displayed graphs. ποΈ
- Added Go To button which allows you to jump to any coordinates and zoom levels.
βοΈ