Skip to content

uname0x96/yolov3_multi_backbone

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A minimal tensorflow implementation of YOLOv3, with support for multibackbone Resnet, VGG, Darknet53, mobilenetv2, mobilenetv3, training, inference and evaluation.

  • Resnet
  • VGG
  • Darknet53
  • mobilenetv2
  • mobilenetv3

Installation


Install requirements and download pretrained weights

$ pip3 install -r ./docs/requirements.txt
$ wget https://pjreddie.com/media/files/yolov3.weights

Quick start


In this part, we will use pretrained weights to make predictions on both image and video.

$ python image_demo.py
$ python video_demo.py # if use camera, set video_path = 0

Train yymnist


you can train it and then evaluate your model

$ python train.py
$ tensorboard --logdir ./data/log
$ python test.py
$ cd ../mAP
$ python main.py        # Detection images are expected to save in `YOLOV3/data/detection`

Track training progress in Tensorboard and go to http://localhost:6006/

$ tensorboard --logdir ./data/log