forked from open-mmlab/OpenPCDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
open3d_vis_utils.py
116 lines (91 loc) · 3.41 KB
/
open3d_vis_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
Open3d visualization tool box
Written by Jihan YANG
All rights preserved from 2021 - present.
"""
import open3d
import torch
import matplotlib
import numpy as np
box_colormap = [
[1, 1, 1],
[0, 1, 0],
[0, 1, 1],
[1, 1, 0],
]
def get_coor_colors(obj_labels):
"""
Args:
obj_labels: 1 is ground, labels > 1 indicates different instance cluster
Returns:
rgb: [N, 3]. color for each point.
"""
colors = matplotlib.colors.XKCD_COLORS.values()
max_color_num = obj_labels.max()
color_list = list(colors)[:max_color_num+1]
colors_rgba = [matplotlib.colors.to_rgba_array(color) for color in color_list]
label_rgba = np.array(colors_rgba)[obj_labels]
label_rgba = label_rgba.squeeze()[:, :3]
return label_rgba
def draw_scenes(points, gt_boxes=None, ref_boxes=None, ref_labels=None, ref_scores=None, point_colors=None, draw_origin=True):
if isinstance(points, torch.Tensor):
points = points.cpu().numpy()
if isinstance(gt_boxes, torch.Tensor):
gt_boxes = gt_boxes.cpu().numpy()
if isinstance(ref_boxes, torch.Tensor):
ref_boxes = ref_boxes.cpu().numpy()
vis = open3d.visualization.Visualizer()
vis.create_window()
vis.get_render_option().point_size = 1.0
vis.get_render_option().background_color = np.zeros(3)
# draw origin
if draw_origin:
axis_pcd = open3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0, origin=[0, 0, 0])
vis.add_geometry(axis_pcd)
pts = open3d.geometry.PointCloud()
pts.points = open3d.utility.Vector3dVector(points[:, :3])
vis.add_geometry(pts)
if point_colors is None:
pts.colors = open3d.utility.Vector3dVector(np.ones((points.shape[0], 3)))
else:
pts.colors = open3d.utility.Vector3dVector(point_colors)
if gt_boxes is not None:
vis = draw_box(vis, gt_boxes, (0, 0, 1))
if ref_boxes is not None:
vis = draw_box(vis, ref_boxes, (0, 1, 0), ref_labels, ref_scores)
vis.run()
vis.destroy_window()
def translate_boxes_to_open3d_instance(gt_boxes):
"""
4-------- 6
/| /|
5 -------- 3 .
| | | |
. 7 -------- 1
|/ |/
2 -------- 0
"""
center = gt_boxes[0:3]
lwh = gt_boxes[3:6]
axis_angles = np.array([0, 0, gt_boxes[6] + 1e-10])
rot = open3d.geometry.get_rotation_matrix_from_axis_angle(axis_angles)
box3d = open3d.geometry.OrientedBoundingBox(center, rot, lwh)
line_set = open3d.geometry.LineSet.create_from_oriented_bounding_box(box3d)
# import ipdb; ipdb.set_trace(context=20)
lines = np.asarray(line_set.lines)
lines = np.concatenate([lines, np.array([[1, 4], [7, 6]])], axis=0)
line_set.lines = open3d.utility.Vector2iVector(lines)
return line_set, box3d
def draw_box(vis, gt_boxes, color=(0, 1, 0), ref_labels=None, score=None):
for i in range(gt_boxes.shape[0]):
line_set, box3d = translate_boxes_to_open3d_instance(gt_boxes[i])
if ref_labels is None:
line_set.paint_uniform_color(color)
else:
line_set.paint_uniform_color(box_colormap[ref_labels[i]])
if ref_labels[i].cpu() == 2: # Only visualize pedestrian detections
vis.add_geometry(line_set)
# if score is not None:
# corners = box3d.get_box_points()
# vis.add_3d_label(corners[5], '%.2f' % score[i])
return vis