Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add relative orbit dynamics with Carter's STM #694

Open
wants to merge 34 commits into
base: feature/add_ralative_position_stm
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion settings/sample_satellite/satellite_sub.ini
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ relative_orbit_update_method = 1
relative_dynamics_model_type = 0
// STM Relative Dynamics model type (only valid for STM update)
// 0: HCW, 1: Melton, 2: SS, 3: Sabatini, 4: Carter, 5: Yamanaka-Ankersen
stm_model_type = 5
stm_model_type = 4
// Initial satellite position relative to the reference satellite in LVLH frame[m]
// * The coordinate system is defined at [PLANET_SELECTION] in SampleSimBase.ini
initial_relative_position_lvlh_m(0) = 0.0
Expand Down
5 changes: 4 additions & 1 deletion src/dynamics/orbit/relative_orbit.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,9 @@ void RelativeOrbit::InitializeStmMatrix(orbit::StmModel stm_model_type, const Or
double f_ref_rad = phi_rad - arg_perigee_rad;

switch (stm_model_type) {
case orbit::StmModel::kCarter:
relative_orbit_carter_.CalculateInitialInverseMatrix(gravity_constant_m3_s2, f_ref_rad, &reference_oe);
break;
case orbit::StmModel::kYamakawaAnkersen:
relative_orbit_yamanaka_ankersen_.CalculateInitialInverseMatrix(f_ref_rad, &reference_oe);
break;
Expand Down Expand Up @@ -143,7 +146,7 @@ void RelativeOrbit::CalculateStm(orbit::StmModel stm_model_type, const Orbit* re
break;
}
case orbit::StmModel::kCarter: {
stm_ = orbit::CalcCarterStm(reference_sat_orbit_radius, gravity_constant_m3_s2, f_ref_rad, &reference_oe);
stm_ = relative_orbit_carter_.CalculateSTM(gravity_constant_m3_s2, elapsed_sec, f_ref_rad, &reference_oe);
break;
}
case orbit::StmModel::kYamakawaAnkersen: {
Expand Down
2 changes: 2 additions & 0 deletions src/dynamics/orbit/relative_orbit.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
#include <math_physics/math/ordinary_differential_equation.hpp>
#include <math_physics/orbit/relative_orbit_models.hpp>
#include <math_physics/orbit/relative_orbit_yamanaka_ankersen.hpp>
#include <math_physics/orbit/relative_orbit_carter.hpp>
#include <simulation/multiple_spacecraft/relative_information.hpp>
#include <string>

Expand Down Expand Up @@ -87,6 +88,7 @@ class RelativeOrbit : public Orbit, public math::OrdinaryDifferentialEquation<6>
orbit::StmModel stm_model_type_; //!< State Transition Matrix model type
RelativeInformation* relative_information_; //!< Relative information
orbit::RelativeOrbitYamanakaAnkersen relative_orbit_yamanaka_ankersen_; //!< Relative Orbit Calcilater with Yamanaka-Ankersen's STM
orbit::RelativeOrbitCarter relative_orbit_carter_; //!< Relative Orbit Calcilater with Carter's STM

/**
* @fn InitializeState
Expand Down
1 change: 1 addition & 0 deletions src/math_physics/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ add_library(${PROJECT_NAME} STATIC
orbit/kepler_orbit.cpp
orbit/relative_orbit_models.cpp
orbit/relative_orbit_yamanaka_ankersen.cpp
orbit/relative_orbit_carter.cpp
orbit/interpolation_orbit.cpp
orbit/sgp4/sgp4ext.cpp
orbit/sgp4/sgp4io.cpp
Expand Down
143 changes: 143 additions & 0 deletions src/math_physics/orbit/relative_orbit_carter.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
/**
* @file relative_orbit_carter.cpp
* @brief Functions to calculate Carter's STM for relative orbit
*/
#include "relative_orbit_carter.hpp"

#include <environment/global/physical_constants.hpp>

#include "./relative_orbit_models.hpp"
#include "./sgp4/sgp4unit.h" // for getgravconst()

namespace orbit {

RelativeOrbitCarter::RelativeOrbitCarter() {}

RelativeOrbitCarter::~RelativeOrbitCarter() {}

void RelativeOrbitCarter::CalculateInitialInverseMatrix(double gravity_constant_m3_s2, double f_ref_rad, OrbitalElements* reference_oe) {
double e = reference_oe->GetEccentricity();
double a = reference_oe->GetSemiMajorAxis_m();
double h = pow(a * (1.0 - pow(e, 2)) * gravity_constant_m3_s2, 0.5); // angular momentum

double E_rad = 2.0 * atan(sqrt((1.0 - e) / (1.0 + e)) * tan(f_ref_rad / 2.0));
double k = e * cos(f_ref_rad) + 1.0;
// double K1 = pow(1 - e * e, -2.5) * (-1.5 * e * E_rad + (1 + e * e) * sin(E_rad) - e * sin(2. * E_rad) / 4.);
double K2 = pow(1.0 - pow(e, 2.0), -2.5) * (0.5 * E_rad - 0.25 * sin(2.0 * E_rad) - e * pow(sin(E_rad), 3.0) / 3.0);
double phi1 = sin(f_ref_rad) * k;
double phi2 = 2.0 * e * phi1 * (sin(f_ref_rad) / pow(k, 3) - 3.0 * e * K2) - cos(f_ref_rad) / k;
double phi3 = 6.0 * e * phi1 * K2 - 2.0 * pow(sin(f_ref_rad), 2.0) / pow(k, 2.0) - pow(cos(f_ref_rad), 2.0) / k - pow(cos(f_ref_rad), 2.0);
double phi1_prime = cos(f_ref_rad) * k - e * pow(sin(f_ref_rad), 2.0);
double phi2_prime = -6.0 * pow(e, 2.0) * phi1_prime * K2 +
2.0 * e * sin(f_ref_rad) * (2.0 * cos(f_ref_rad) - 3.0 * e * pow(sin(f_ref_rad), 2.0) + 2.0 * e) / pow(k, 3.0) +
sin(f_ref_rad) / pow(k, 2.0);
double phi3_prime = 6.0 * e * phi1_prime * K2 - (6.0 * e * pow(sin(f_ref_rad), 3.0) - 4.0 * sin(f_ref_rad) * (e + cos(f_ref_rad))) / pow(k, 3.0) +
0.5 * sin(2 * f_ref_rad) * (2.0 + (2.0 + e * cos(f_ref_rad)) * pow(k, 2.0));
double S1 = -cos(f_ref_rad) * (1.0 + 0.5 * e * cos(f_ref_rad));
double S2 = 3.0 * e * pow(k, 2.0) * K2 - sin(f_ref_rad) / k;
double S3 = -6.0 * pow(k, 2.0) * K2 - (2.0 + k) / 2.0 / k * sin(2.0 * f_ref_rad);

initial_inverse_matrix_[0][0] = 4.0 * S2 + phi2_prime;
initial_inverse_matrix_[0][1] = 0.0;
initial_inverse_matrix_[0][2] = 0.0;
initial_inverse_matrix_[0][3] = -phi2;
initial_inverse_matrix_[0][4] = 2.0 * S2;
initial_inverse_matrix_[0][5] = 0.0;
initial_inverse_matrix_[1][0] = -2.0;
initial_inverse_matrix_[1][1] = 0.0;
initial_inverse_matrix_[1][2] = 0.0;
initial_inverse_matrix_[1][3] = 0.0;
initial_inverse_matrix_[1][4] = -1.0;
initial_inverse_matrix_[1][5] = 0.0;
initial_inverse_matrix_[2][0] = 0.0;
initial_inverse_matrix_[2][1] = 0.0;
initial_inverse_matrix_[2][2] = cos(f_ref_rad);
initial_inverse_matrix_[2][3] = 0.0;
initial_inverse_matrix_[2][4] = 0.0;
initial_inverse_matrix_[2][5] = -sin(f_ref_rad);
initial_inverse_matrix_[3][0] = -(4.0 * S1 + phi1_prime);
initial_inverse_matrix_[3][1] = 0.0;
initial_inverse_matrix_[3][2] = 0.0;
initial_inverse_matrix_[3][3] = phi1;
initial_inverse_matrix_[3][4] = -2.0 * S1;
initial_inverse_matrix_[3][5] = 0.0;
initial_inverse_matrix_[4][0] = 2.0 * S3 + phi3_prime;
initial_inverse_matrix_[4][1] = -1.0;
initial_inverse_matrix_[4][2] = 0.0;
initial_inverse_matrix_[4][3] = -phi3;
initial_inverse_matrix_[4][4] = S3;
initial_inverse_matrix_[4][5] = 0.0;
initial_inverse_matrix_[5][0] = 0.0;
initial_inverse_matrix_[5][1] = 0.0;
initial_inverse_matrix_[5][2] = sin(f_ref_rad);
initial_inverse_matrix_[5][3] = 0.0;
initial_inverse_matrix_[5][4] = 0.0;
initial_inverse_matrix_[5][5] = cos(f_ref_rad);

initial_inverse_matrix_ =
initial_inverse_matrix_ * orbit::CalcStateTransformationMatrixLvlhToTschaunerHampel(gravity_constant_m3_s2, e, h, f_ref_rad);
}

math::Matrix<6, 6> RelativeOrbitCarter::CalculateSTM(double orbit_radius_m, double gravity_constant_m3_s2, double f_ref_rad,
OrbitalElements* reference_oe) {
math::Matrix<6, 6> stm;
double e = reference_oe->GetEccentricity();
double a = reference_oe->GetSemiMajorAxis_m();
double h = pow(a * (1 - pow(e, 2)) * gravity_constant_m3_s2, 0.5); // angular momentum
double E_rad = 2.0 * atan(sqrt((1.0 - e) / (1.0 + e)) * tan(f_ref_rad / 2.0));
double k = e * cos(f_ref_rad) + 1.0;
// double K1 = pow(1 - e * e, -2.5) * (-1.5 * e * E_rad + (1 + e * e) * sin(E_rad) - e * sin(2. * E_rad) / 4.);
double K2 = pow(1.0 - pow(e, 2.0), -2.5) * (0.5 * E_rad - 0.25 * sin(2.0 * E_rad) - e * pow(sin(E_rad), 3.0) / 3.0);
double phi1 = sin(f_ref_rad) * k;
double phi2 = 2.0 * e * phi1 * (sin(f_ref_rad) / pow(k, 3) - 3.0 * e * K2) - cos(f_ref_rad) / k;
double phi3 = 6.0 * e * phi1 * K2 - 2.0 * pow(sin(f_ref_rad), 2.0) / pow(k, 2.0) - pow(cos(f_ref_rad), 2.0) / k - pow(cos(f_ref_rad), 2.0);
double phi1_prime = cos(f_ref_rad) * k - e * pow(sin(f_ref_rad), 2.0);
double phi2_prime = -6.0 * pow(e, 2.0) * phi1_prime * K2 +
2.0 * e * sin(f_ref_rad) * (2.0 * cos(f_ref_rad) - 3.0 * e * pow(sin(f_ref_rad), 2.0) + 2.0 * e) / pow(k, 3.0) +
sin(f_ref_rad) / pow(k, 2.0);
double phi3_prime = 6.0 * e * phi1_prime * K2 - (6.0 * e * pow(sin(f_ref_rad), 3.0) - 4.0 * sin(f_ref_rad) * (e + cos(f_ref_rad))) / pow(k, 3.0) +
0.5 * sin(2 * f_ref_rad) * (2.0 + (2.0 + e * cos(f_ref_rad)) * pow(k, 2.0));
double S1 = -cos(f_ref_rad) * (1.0 + 0.5 * e * cos(f_ref_rad));
double S2 = 3.0 * e * pow(k, 2.0) * K2 - sin(f_ref_rad) / k;
double S3 = -6.0 * pow(k, 2.0) * K2 - (2.0 + k) / 2.0 / k * sin(2.0 * f_ref_rad);

stm[0][0] = phi1;
stm[0][1] = phi3;
stm[0][2] = 0.0;
stm[0][3] = phi2;
stm[0][4] = 0.0;
stm[0][5] = 0.0;
stm[1][0] = -2 * S1;
stm[1][1] = -S3;
stm[1][2] = 0.0;
stm[1][3] = -2 * S2;
stm[1][4] = -1;
stm[1][5] = 0.0;
stm[2][0] = 0.0;
stm[2][1] = 0.0;
stm[2][2] = cos(f_ref_rad);
stm[2][3] = 0.0;
stm[2][4] = 0.0;
stm[2][5] = sin(f_ref_rad);
stm[3][0] = phi1_prime;
stm[3][1] = phi3_prime;
stm[3][2] = 0.0;
stm[3][3] = phi2_prime;
stm[3][4] = 0.0;
stm[3][5] = 0.0;
stm[4][0] = -2 * phi1;
stm[4][1] = -(2 * phi3 + 1);
stm[4][2] = 0.0;
stm[4][3] = -2 * phi2;
stm[4][4] = 0.0;
stm[4][5] = 0.0;
stm[5][0] = 0.0;
stm[5][1] = 0.0;
stm[5][2] = -sin(f_ref_rad);
stm[5][3] = 0.0;
stm[5][4] = 0.0;
stm[5][5] = cos(f_ref_rad);
return orbit::CalcStateTransformationMatrixTschaunerHampelToLvlh(gravity_constant_m3_s2, e, h, f_ref_rad) * stm * initial_inverse_matrix_;
}

} // namespace orbit
62 changes: 62 additions & 0 deletions src/math_physics/orbit/relative_orbit_carter.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
/**
* @file relative_orbit_carter.hpp
* @brief Functions to calculate Carter's STM for relative orbit
*/

#ifndef S2E_LIBRARY_ORBIT_RELATIVE_ORBIT_CARTER_HPP_
#define S2E_LIBRARY_ORBIT_RELATIVE_ORBIT_CARTER_HPP_

#include "../math/matrix.hpp"
#include "./orbital_elements.hpp"

namespace orbit {

/**
* @class RelativeOrbitCarter
* @brief Class to calculate Yamanaka-Ankersen relative orbital STM
*/
class RelativeOrbitCarter {
public:
/**
* @fn RelativeOrbitCarter
* @brief Default Constructor
*/
RelativeOrbitCarter();
/**
* @fn ~RelativeOrbitCarter
* @brief Destructor
*/
~RelativeOrbitCarter();

/**
* @fn CalculateInitialInverseMatrix
* @brief Calculate position and velocity with Kepler orbit propagation
* @param [in] gravity_constant_m3_s2: Gravity constant of the center body [m3/s2]
* @param [in] f_ref_rad: True anomaly of the reference satellite [rad]
* @param [in] reference_oe: Orbital elements of reference satellite
*/
void CalculateInitialInverseMatrix(double gravity_constant_m3_s2, double f_ref_rad, OrbitalElements* reference_oe);

/**
* @fn CalculateSTM
* @brief Calculate position and velocity with Kepler orbit propagation
* @param [in] orbit_radius_m: Orbit radius [m]
* @param [in] gravity_constant_m3_s2: Gravity constant of the center body [m3/s2]
* @param [in] f_ref_rad: True anomaly of the reference satellite [rad]
* @param [in] reference_oe: Orbital elements of reference satellite
*/
math::Matrix<6, 6> CalculateSTM(double orbit_radius_m, double gravity_constant_m3_s2, double f_ref_rad, OrbitalElements* reference_oe);

/**
* @fn GetInitialInverseMatrix
* @brief Return initial inverse matrix
*/
inline const math::Matrix<6, 6> GetInitialInverseMatrix() const { return initial_inverse_matrix_; }

private:
math::Matrix<6, 6> initial_inverse_matrix_{0.0}; //!< Gravity constant of the center body [m3/s2]
};

} // namespace orbit

#endif // S2E_LIBRARY_ORBIT_RELATIVE_ORBIT_MODEL_HPP_
88 changes: 84 additions & 4 deletions src/math_physics/orbit/relative_orbit_models.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -129,10 +129,90 @@ math::Matrix<6, 6> CalcSabatiniStm(double orbit_radius_m, double gravity_constan
return stm;
}

math::Matrix<6, 6> CalcCarterStm(double orbit_radius_m, double gravity_constant_m3_s2, double f_ref_rad, OrbitalElements* reference_oe) {
math::Matrix<6, 6> stm;
// ここでstmを計算してください
return stm;
math::Matrix<6, 6> CalcStateTransformationMatrixLvlhToTschaunerHampel(const double gravity_constant_m3_s2, const double eccentricity,
const double angular_momentum_kg_m2_s, const double true_anomaly_rad) {
math::Matrix<6, 6> transition_matrix;
transition_matrix[0][0] = 1.0 + eccentricity * cos(true_anomaly_rad);
transition_matrix[0][1] = 0.0;
transition_matrix[0][2] = 0.0;
transition_matrix[0][3] = 0.0;
transition_matrix[0][4] = 0.0;
transition_matrix[0][5] = 0.0;
transition_matrix[1][0] = 0.0;
transition_matrix[1][1] = 1.0 + eccentricity * cos(true_anomaly_rad);
transition_matrix[1][2] = 0.0;
transition_matrix[1][3] = 0.0;
transition_matrix[1][4] = 0.0;
transition_matrix[1][5] = 0.0;
transition_matrix[2][0] = 0.0;
transition_matrix[2][1] = 0.0;
transition_matrix[2][2] = 1.0 + eccentricity * cos(true_anomaly_rad);
transition_matrix[2][3] = 0.0;
transition_matrix[2][4] = 0.0;
transition_matrix[2][5] = 0.0;
transition_matrix[3][0] = -eccentricity * sin(true_anomaly_rad);
transition_matrix[3][1] = 0.0;
transition_matrix[3][2] = 0.0;
transition_matrix[3][3] = pow(angular_momentum_kg_m2_s, 3.0) / pow(gravity_constant_m3_s2, 2.0) / (1.0 + eccentricity * cos(true_anomaly_rad));
transition_matrix[3][4] = 0.0;
transition_matrix[3][5] = 0.0;
transition_matrix[4][0] = 0.0;
transition_matrix[4][1] = -eccentricity * sin(true_anomaly_rad);
transition_matrix[4][2] = 0.0;
transition_matrix[4][3] = 0.0;
transition_matrix[4][4] = pow(angular_momentum_kg_m2_s, 3.0) / pow(gravity_constant_m3_s2, 2.0) / (1.0 + eccentricity * cos(true_anomaly_rad));
transition_matrix[4][5] = 0.0;
transition_matrix[5][0] = 0.0;
transition_matrix[5][1] = 0.0;
transition_matrix[5][2] = -eccentricity * sin(true_anomaly_rad);
transition_matrix[5][3] = 0.0;
transition_matrix[5][4] = 0.0;
transition_matrix[5][5] = pow(angular_momentum_kg_m2_s, 3.0) / pow(gravity_constant_m3_s2, 2.0) / (1.0 + eccentricity * cos(true_anomaly_rad));

return transition_matrix;
}

math::Matrix<6, 6> CalcStateTransformationMatrixTschaunerHampelToLvlh(const double gravity_constant_m3_s2, const double eccentricity,
const double angular_momentum_kg_m2_s, const double true_anomaly_rad) {
math::Matrix<6, 6> transition_matrix;
transition_matrix[0][0] = 1.0 / (1.0 + eccentricity * cos(true_anomaly_rad));
transition_matrix[0][1] = 0.0;
transition_matrix[0][2] = 0.0;
transition_matrix[0][3] = 0.0;
transition_matrix[0][4] = 0.0;
transition_matrix[0][5] = 0.0;
transition_matrix[1][0] = 0.0;
transition_matrix[1][1] = 1.0 / (1.0 + eccentricity * cos(true_anomaly_rad));
transition_matrix[1][2] = 0.0;
transition_matrix[1][3] = 0.0;
transition_matrix[1][4] = 0.0;
transition_matrix[1][5] = 0.0;
transition_matrix[2][0] = 0.0;
transition_matrix[2][1] = 0.0;
transition_matrix[2][2] = 1.0 / (1.0 + eccentricity * cos(true_anomaly_rad));
transition_matrix[2][3] = 0.0;
transition_matrix[2][4] = 0.0;
transition_matrix[2][5] = 0.0;
transition_matrix[3][0] = pow(gravity_constant_m3_s2, 2.0) * eccentricity * sin(true_anomaly_rad) / pow(angular_momentum_kg_m2_s, 3.0);
transition_matrix[3][1] = 0.0;
transition_matrix[3][2] = 0.0;
transition_matrix[3][3] = pow(gravity_constant_m3_s2, 2.0) * (1.0 + eccentricity * cos(true_anomaly_rad)) / pow(angular_momentum_kg_m2_s, 3.0);
transition_matrix[3][4] = 0.0;
transition_matrix[3][5] = 0.0;
transition_matrix[4][0] = 0.0;
transition_matrix[4][1] = pow(gravity_constant_m3_s2, 2.0) * eccentricity * sin(true_anomaly_rad) / pow(angular_momentum_kg_m2_s, 3.0);
transition_matrix[4][2] = 0.0;
transition_matrix[4][3] = 0.0;
transition_matrix[4][4] = pow(gravity_constant_m3_s2, 2.0) * (1.0 + eccentricity * cos(true_anomaly_rad)) / pow(angular_momentum_kg_m2_s, 3.0);
transition_matrix[4][5] = 0.0;
transition_matrix[5][0] = 0.0;
transition_matrix[5][1] = 0.0;
transition_matrix[5][2] = pow(gravity_constant_m3_s2, 2.0) * eccentricity * sin(true_anomaly_rad) / pow(angular_momentum_kg_m2_s, 3.0);
transition_matrix[5][3] = 0.0;
transition_matrix[5][4] = 0.0;
transition_matrix[5][5] = pow(gravity_constant_m3_s2, 2.0) * (1.0 + eccentricity * cos(true_anomaly_rad)) / pow(angular_momentum_kg_m2_s, 3.0);

return transition_matrix;
}

} // namespace orbit
27 changes: 20 additions & 7 deletions src/math_physics/orbit/relative_orbit_models.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -90,15 +90,28 @@ math::Vector<6> CalcSsCorrectionTerm(double orbit_radius_m, double gravity_const
math::Matrix<6, 6> CalcSabatiniStm(double orbit_radius_m, double gravity_constant_m3_s2, double elapsed_time_s, OrbitalElements* reference_oe);

/**
* @fn CalcCarterStm
* @brief Calculate Carter State Transition Matrix
* @param [in] orbit_radius_m: Orbit radius [m]
* @fn CalcStateTransformationMatrixLvlhToTschaunerHampel
* @brief Calculate state tranformation matrix from the state variables in the LVLH frame to the state variables for Tschauner-Hampel equation.
* @param [in] gravity_constant_m3_s2: Gravity constant of the center body [m3/s2]
* @param [in] f_ref_rad: True anomaly of the reference satellite [rad]
* @param [in] reference_oe: Orbital elements of reference satellite
* @return State Transition Matrix
* @param [in] eccentricity: Eccentricity []
* @param [in] angular_momentum_kg_m2_s: Angular momentum of the spacecraft [kg*m2/s]
* @param [in] true_anomaly_rad: True anomaly of the spacecraft [rad]
* @param
*/
math::Matrix<6, 6> CalcStateTransformationMatrixLvlhToTschaunerHampel(const double gravity_constant_m3_s2, const double eccentricity,
const double angular_momentum_kg_m2_s, const double true_anomaly_rad);

/**
* @fn CalcStateTransformationMatrixTschaunerHampelToLvlh
* @brief Calculate state tranformation matrix from the state variables for Tschauner-Hampel equation to the state variables in the LVLH frame.
* @param [in] gravity_constant_m3_s2: Gravity constant of the center body [m3/s2]
* @param [in] eccentricity: Eccentricity []
* @param [in] angular_momentum_kg_m2_s: Angular momentum of the spacecraft [kg*m2/s]
* @param [in] true_anomaly_rad: True anomaly of the spacecraft [rad]
* @param
*/
math::Matrix<6, 6> CalcCarterStm(double orbit_radius_m, double gravity_constant_m3_s2, double f_ref_rad, OrbitalElements* reference_oe);
math::Matrix<6, 6> CalcStateTransformationMatrixTschaunerHampelToLvlh(const double gravity_constant_m3_s2, const double eccentricity,
const double angular_momentum_kg_m2_s, const double true_anomaly_rad);

} // namespace orbit

Expand Down
Loading