Skip to content

Commit

Permalink
Fix demo links
Browse files Browse the repository at this point in the history
  • Loading branch information
gilad-shaham committed Apr 20, 2023
1 parent d46e424 commit d42ba82
Show file tree
Hide file tree
Showing 2 changed files with 18 additions and 18 deletions.
18 changes: 9 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ For full usage instructions, run the script with the `-h` or `--help` flag:
<a href="demos/mask-detection/README.md"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/tree/1.3.x-latest/mask-detection/">
<a target="_blank" href="https://github.com/mlrun/demos/tree/release/1.3.x-latest/mask-detection/">
<img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>This demo contains 3 notebooks where we:
Expand All @@ -117,7 +117,7 @@ For full usage instructions, run the script with the `-h` or `--help` flag:
<a href="demos/fraud-prevention-feature-store/README.md"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/blob/1.3.x-latest/fraud-prevention-feature-store/">
<a target="_blank" href="https://github.com/mlrun/demos/blob/release/1.3.x-latest/fraud-prevention-feature-store/">
<img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>Demonstrates the feature store usage for fraud prevention: Data ingestion & preparation; Model training & testing; Model serving; Building An Automated ML Pipeline.
Expand All @@ -129,7 +129,7 @@ For full usage instructions, run the script with the `-h` or `--help` flag:
<a href="demos/news-article-nlp/README.md"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/tree/1.3.x-latest/news-article-nlp/"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
<a target="_blank" href="https://github.com/mlrun/demos/tree/release/1.3.x-latest/news-article-nlp/"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>This demo creates an NLP pipeline that summarizes and extract keywords from a news article URL. We will be using state-of-the-art transformer models. such as BERT. to perform these NLP tasks.
Additionally, we will use MLRun's real-time inference graphs to create the pipeline. This allows for easy containerization and deployment of the pipeline on top of a production-ready Kubernetes cluster.
Expand All @@ -141,7 +141,7 @@ Additionally, we will use MLRun's real-time inference graphs to create the pipel
<a href="demos/network-operations/README.md"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/tree/1.3.x-latest/network-operations/"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
<a target="_blank" href="https://github.com/mlrun/demos/tree/release/1.3.x-latest/network-operations/"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>This demo demonstrates how to build an automated machine-learning (ML) pipeline for predicting network outages based on network-device telemetry, also known as Network Operations (NetOps).
The demo implements feature engineering, model training, testing, inference, and model monitoring (with concept-drift detection).
Expand All @@ -154,7 +154,7 @@ The demo uses a offline/real-time metrics simulator to generate semi-random netw
<a href="demosstocke-prediction/README.md"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/tree/1.3.x-latest/stocks-prediction/"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
<a target="_blank" href="https://github.com/mlrun/demos/tree/release/1.3.x-latest/stocks-prediction/"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>This demo illustrates using Iguazio's latest technologies and methods for model serving, the platform feature store, and the MLRun frameworks (sub-modules for the most commonly
used machine and deep learning frameworks, providing features such as automatic logging, model management, and distributed training). The demo predicts stock prices,
Expand All @@ -180,7 +180,7 @@ The demo uses a offline/real-time metrics simulator to generate semi-random netw
<a href="demos/howto/converting-to-mlrun/mlrun-code.ipynb"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/tree/1.3.x-latest/howto/converting-to-mlrun"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
<a target="_blank" href="https://github.com/mlrun/demos/tree/release/v1.3.x-latest/howto/converting-to-mlrun"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>Demonstrates how to convert existing ML code to an MLRun project.
The demo implements an MLRun project for taxi ride-fare prediction based on a <a href="https://www.kaggle.com/jsylas/python-version-of-top-ten-rank-r-22-m-2-88">Kaggle notebook</a> with an ML Python script that uses data from the <a href="https://www.kaggle.com/c/new-york-city-taxi-fare-prediction">New York City Taxi Fare Prediction competition</a>.
Expand All @@ -192,7 +192,7 @@ The demo uses a offline/real-time metrics simulator to generate semi-random netw
<a href="demos/howto/spark/spark-mlrun-read-csv.ipynb"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-read-csv.ipynb"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
<a target="_blank" href="https://github.com/mlrun/demos/blob/release/1.3.x-latest/howto/spark/spark-mlrun-read-csv.ipynb"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>Demonstrates how to run a Spark job that reads a CSV file and logs the data set to an MLRun database.
</td>
Expand All @@ -203,7 +203,7 @@ The demo uses a offline/real-time metrics simulator to generate semi-random netw
<a href="demos/howto/spark/spark-mlrun-describe.ipynb"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-describe.ipynb"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
<a target="_blank" href="https://github.com/mlrun/demos/blob/release/1.3.x-latest/howto/spark/spark-mlrun-describe.ipynb"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>Demonstrates how to create and run a Spark job that generates a profile report from an Apache Spark DataFrame based on pandas profiling.
</td>
Expand All @@ -214,7 +214,7 @@ The demo uses a offline/real-time metrics simulator to generate semi-random netw
<a href="demos/howto/spark/spark-operator.ipynb"><img src="./assets/images/Jupyter-Logo-32px.png"/><br>Open locally</a>
</td>
<td align="center", style="min-width:45px; padding: 10px;">
<a target="_blank" href="https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-operator.ipynb"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
<a target="_blank" href="https://github.com/mlrun/demos/blob/release/1.3.x-latest/howto/spark/spark-operator.ipynb"><img src="./assets/images/GitHub-Mark-32px.png"/><br>View on GitHub</a>
</td>
<td>Demonstrates how to use <a target="_blank" href="https://github.com/GoogleCloudPlatform/spark-on-k8s-operator">Spark Operator</a> to run a Spark job over Kubernetes with MLRun.
</td>
Expand Down
18 changes: 9 additions & 9 deletions welcome.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,7 @@
" <a href=\"demos/mask-detection/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/mask-detection/\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/release/1.3.x-latest/mask-detection/\">\n",
" <img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>This demo contains 3 notebooks where we:\n",
Expand All @@ -210,7 +210,7 @@
" <a href=\"demos/fraud-prevention-feature-store/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/fraud-prevention-feature-store/\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/release/1.3.x-latest/fraud-prevention-feature-store/\">\n",
" <img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>Demonstrates the feature store usage for fraud prevention: Data ingestion & preparation; Model training & testing; Model serving; Building An Automated ML Pipeline.\n",
Expand All @@ -222,7 +222,7 @@
" <a href=\"demos/news-article-nlp/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/news-article-nlp/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/release/1.3.x-latest/news-article-nlp/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>This demo creates an NLP pipeline that summarizes and extract keywords from a news article URL. We will be using state-of-the-art transformer models. such as BERT. to perform these NLP tasks.\n",
"Additionally, we will use MLRun's real-time inference graphs to create the pipeline. This allows for easy containerization and deployment of the pipeline on top of a production-ready Kubernetes cluster.\n",
Expand All @@ -234,7 +234,7 @@
" <a href=\"demos/network-operations/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/network-operations/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/release/1.3.x-latest/network-operations/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>This demo demonstrates how to build an automated machine-learning (ML) pipeline for predicting network outages based on network-device telemetry, also known as Network Operations (NetOps).\n",
"The demo implements feature engineering, model training, testing, inference, and model monitoring (with concept-drift detection).\n",
Expand All @@ -247,7 +247,7 @@
" <a href=\"demosstocke-prediction/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/stocks-prediction/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/release/1.3.x-latest/stocks-prediction/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>This demo illustrates using Iguazio's latest technologies and methods for model serving, the platform feature store, and the MLRun frameworks (sub-modules for the most commonly \n",
"\t\tused machine and deep learning frameworks, providing features such as automatic logging, model management, and distributed training). The demo predicts stock prices, \n",
Expand Down Expand Up @@ -289,7 +289,7 @@
" <a href=\"demos/howto/converting-to-mlrun/mlrun-code.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/howto/converting-to-mlrun\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/release/v1.3.x-latest/howto/converting-to-mlrun\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>Demonstrates how to convert existing ML code to an MLRun project.\n",
" The demo implements an MLRun project for taxi ride-fare prediction based on a <a href=\"https://www.kaggle.com/jsylas/python-version-of-top-ten-rank-r-22-m-2-88\">Kaggle notebook</a> with an ML Python script that uses data from the <a href=\"https://www.kaggle.com/c/new-york-city-taxi-fare-prediction\">New York City Taxi Fare Prediction competition</a>.\n",
Expand All @@ -301,7 +301,7 @@
" <a href=\"demos/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/release/1.3.x-latest/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>Demonstrates how to run a Spark job that reads a CSV file and logs the data set to an MLRun database.\n",
" </td>\n",
Expand All @@ -312,7 +312,7 @@
" <a href=\"demos/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/release/1.3.x-latest/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>Demonstrates how to create and run a Spark job that generates a profile report from an Apache Spark DataFrame based on pandas profiling.\n",
" </td>\n",
Expand All @@ -323,7 +323,7 @@
" <a href=\"demos/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
" </td>\n",
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/release/1.3.x-latest/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
" </td>\n",
" <td>Demonstrates how to use <a target=\"_blank\" href=\"https://github.com/GoogleCloudPlatform/spark-on-k8s-operator\">Spark Operator</a> to run a Spark job over Kubernetes with MLRun.\n",
" </td>\n",
Expand Down

0 comments on commit d42ba82

Please sign in to comment.