-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
170 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
6 changes: 5 additions & 1 deletion
6
source/projects/fiddle_tilde/fft_mayer.proto.h
100755 → 100644
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,5 @@ | ||
void fht(float *fz, int n);void ifft(int n, float *real, float *imag);void realfft(int n, float *real);void fft(int n, float *real, float *imag);void realifft(int n, float *real); | ||
void fht(float *fz, int n); | ||
void ifft(int n, float *real, float *imag); | ||
void realfft(int n, float *real); | ||
void fft(int n, float *real, float *imag); | ||
void realifft(int n, float *real); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,164 @@ | ||
/*** Please only distribute this with it's associated FHT routine.** This algorithm is apparently patented(!) and the code copyrighted. ** See the comment with the fht routine for more info.** -Thanks,** Ron Mayer*/#ifdef REAL#else#define REAL double#endif#ifdef GOOD_TRIG#else#define FAST_TRIG#endif#if defined(GOOD_TRIG)#define FHT_SWAP(a,b,t) {(t)=(a);(a)=(b);(b)=(t);}#define TRIG_VARS \ int t_lam=0;#define TRIG_INIT(k,c,s) \ { \ int i; \ for (i=2 ; i<=k ; i++) \ {coswrk[i]=costab[i];sinwrk[i]=sintab[i];} \ t_lam = 0; \ c = 1; \ s = 0; \ }#define TRIG_NEXT(k,c,s) \ { \ int i,j; \ (t_lam)++; \ for (i=0 ; !((1<<i)&t_lam) ; i++); \ i = k-i; \ s = sinwrk[i]; \ c = coswrk[i]; \ if (i>1) \ { \ for (j=k-i+2 ; (1<<j)&t_lam ; j++); \ j = k - j; \ sinwrk[i] = halsec[i] * (sinwrk[i-1] + sinwrk[j]); \ coswrk[i] = halsec[i] * (coswrk[i-1] + coswrk[j]); \ } \ }#define TRIG_RESET(k,c,s)#endif#if defined(FAST_TRIG)#define TRIG_VARS \ REAL t_c,t_s;#define TRIG_INIT(k,c,s) \ { \ t_c = costab[k]; \ t_s = sintab[k]; \ c = 1; \ s = 0; \ }#define TRIG_NEXT(k,c,s) \ { \ REAL t = c; \ c = t*t_c - s*t_s; \ s = t*t_s + s*t_c; \ }#define TRIG_RESET(k,c,s)#endifstatic REAL halsec[20]= { 0, 0, .54119610014619698439972320536638942006107206337801, .50979557910415916894193980398784391368261849190893, .50241928618815570551167011928012092247859337193963, .50060299823519630134550410676638239611758632599591, .50015063602065098821477101271097658495974913010340, .50003765191554772296778139077905492847503165398345, .50000941253588775676512870469186533538523133757983, .50000235310628608051401267171204408939326297376426, .50000058827484117879868526730916804925780637276181, .50000014706860214875463798283871198206179118093251, .50000003676714377807315864400643020315103490883972, .50000000919178552207366560348853455333939112569380, .50000000229794635411562887767906868558991922348920, .50000000057448658687873302235147272458812263401372 };static REAL costab[20]= { .00000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768847, .92387953251128675612818318939678828682241662586364, .98078528040323044912618223613423903697393373089333, .99518472667219688624483695310947992157547486872985, .99879545620517239271477160475910069444320361470461, .99969881869620422011576564966617219685006108125772, .99992470183914454092164649119638322435060646880221, .99998117528260114265699043772856771617391725094433, .99999529380957617151158012570011989955298763362218, .99999882345170190992902571017152601904826792288976, .99999970586288221916022821773876567711626389934930, .99999992646571785114473148070738785694820115568892, .99999998161642929380834691540290971450507605124278, .99999999540410731289097193313960614895889430318945, .99999999885102682756267330779455410840053741619428 };static REAL sintab[20]= { 1.0000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768846, .38268343236508977172845998403039886676134456248561, .19509032201612826784828486847702224092769161775195, .09801714032956060199419556388864184586113667316749, .04906767432741801425495497694268265831474536302574, .02454122852291228803173452945928292506546611923944, .01227153828571992607940826195100321214037231959176, .00613588464915447535964023459037258091705788631738, .00306795676296597627014536549091984251894461021344, .00153398018628476561230369715026407907995486457522, .00076699031874270452693856835794857664314091945205, .00038349518757139558907246168118138126339502603495, .00019174759731070330743990956198900093346887403385, .00009587379909597734587051721097647635118706561284, .00004793689960306688454900399049465887274686668768 };static REAL coswrk[20]= { .00000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768847, .92387953251128675612818318939678828682241662586364, .98078528040323044912618223613423903697393373089333, .99518472667219688624483695310947992157547486872985, .99879545620517239271477160475910069444320361470461, .99969881869620422011576564966617219685006108125772, .99992470183914454092164649119638322435060646880221, .99998117528260114265699043772856771617391725094433, .99999529380957617151158012570011989955298763362218, .99999882345170190992902571017152601904826792288976, .99999970586288221916022821773876567711626389934930, .99999992646571785114473148070738785694820115568892, .99999998161642929380834691540290971450507605124278, .99999999540410731289097193313960614895889430318945, .99999999885102682756267330779455410840053741619428 };static REAL sinwrk[20]= { 1.0000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768846, .38268343236508977172845998403039886676134456248561, .19509032201612826784828486847702224092769161775195, .09801714032956060199419556388864184586113667316749, .04906767432741801425495497694268265831474536302574, .02454122852291228803173452945928292506546611923944, .01227153828571992607940826195100321214037231959176, .00613588464915447535964023459037258091705788631738, .00306795676296597627014536549091984251894461021344, .00153398018628476561230369715026407907995486457522, .00076699031874270452693856835794857664314091945205, .00038349518757139558907246168118138126339502603495, .00019174759731070330743990956198900093346887403385, .00009587379909597734587051721097647635118706561284, .00004793689960306688454900399049465887274686668768 }; | ||
/* | ||
** Please only distribute this with it's associated FHT routine. | ||
** This algorithm is apparently patented(!) and the code copyrighted. | ||
** See the comment with the fht routine for more info. | ||
** -Thanks, | ||
** Ron Mayer | ||
*/ | ||
|
||
#ifdef REAL | ||
#else | ||
#define REAL double | ||
#endif | ||
|
||
#ifdef GOOD_TRIG | ||
#else | ||
#define FAST_TRIG | ||
#endif | ||
|
||
#if defined(GOOD_TRIG) | ||
#define FHT_SWAP(a,b,t) {(t)=(a);(a)=(b);(b)=(t);} | ||
#define TRIG_VARS \ | ||
int t_lam=0; | ||
#define TRIG_INIT(k,c,s) \ | ||
{ \ | ||
int i; \ | ||
for (i=2 ; i<=k ; i++) \ | ||
{coswrk[i]=costab[i];sinwrk[i]=sintab[i];} \ | ||
t_lam = 0; \ | ||
c = 1; \ | ||
s = 0; \ | ||
} | ||
#define TRIG_NEXT(k,c,s) \ | ||
{ \ | ||
int i,j; \ | ||
(t_lam)++; \ | ||
for (i=0 ; !((1<<i)&t_lam) ; i++); \ | ||
i = k-i; \ | ||
s = sinwrk[i]; \ | ||
c = coswrk[i]; \ | ||
if (i>1) \ | ||
{ \ | ||
for (j=k-i+2 ; (1<<j)&t_lam ; j++); \ | ||
j = k - j; \ | ||
sinwrk[i] = halsec[i] * (sinwrk[i-1] + sinwrk[j]); \ | ||
coswrk[i] = halsec[i] * (coswrk[i-1] + coswrk[j]); \ | ||
} \ | ||
} | ||
#define TRIG_RESET(k,c,s) | ||
#endif | ||
|
||
#if defined(FAST_TRIG) | ||
#define TRIG_VARS \ | ||
REAL t_c,t_s; | ||
#define TRIG_INIT(k,c,s) \ | ||
{ \ | ||
t_c = costab[k]; \ | ||
t_s = sintab[k]; \ | ||
c = 1; \ | ||
s = 0; \ | ||
} | ||
#define TRIG_NEXT(k,c,s) \ | ||
{ \ | ||
REAL t = c; \ | ||
c = t*t_c - s*t_s; \ | ||
s = t*t_s + s*t_c; \ | ||
} | ||
#define TRIG_RESET(k,c,s) | ||
#endif | ||
|
||
static REAL halsec[20]= | ||
{ | ||
0, | ||
0, | ||
.54119610014619698439972320536638942006107206337801, | ||
.50979557910415916894193980398784391368261849190893, | ||
.50241928618815570551167011928012092247859337193963, | ||
.50060299823519630134550410676638239611758632599591, | ||
.50015063602065098821477101271097658495974913010340, | ||
.50003765191554772296778139077905492847503165398345, | ||
.50000941253588775676512870469186533538523133757983, | ||
.50000235310628608051401267171204408939326297376426, | ||
.50000058827484117879868526730916804925780637276181, | ||
.50000014706860214875463798283871198206179118093251, | ||
.50000003676714377807315864400643020315103490883972, | ||
.50000000919178552207366560348853455333939112569380, | ||
.50000000229794635411562887767906868558991922348920, | ||
.50000000057448658687873302235147272458812263401372 | ||
}; | ||
static REAL costab[20]= | ||
{ | ||
.00000000000000000000000000000000000000000000000000, | ||
.70710678118654752440084436210484903928483593768847, | ||
.92387953251128675612818318939678828682241662586364, | ||
.98078528040323044912618223613423903697393373089333, | ||
.99518472667219688624483695310947992157547486872985, | ||
.99879545620517239271477160475910069444320361470461, | ||
.99969881869620422011576564966617219685006108125772, | ||
.99992470183914454092164649119638322435060646880221, | ||
.99998117528260114265699043772856771617391725094433, | ||
.99999529380957617151158012570011989955298763362218, | ||
.99999882345170190992902571017152601904826792288976, | ||
.99999970586288221916022821773876567711626389934930, | ||
.99999992646571785114473148070738785694820115568892, | ||
.99999998161642929380834691540290971450507605124278, | ||
.99999999540410731289097193313960614895889430318945, | ||
.99999999885102682756267330779455410840053741619428 | ||
}; | ||
static REAL sintab[20]= | ||
{ | ||
1.0000000000000000000000000000000000000000000000000, | ||
.70710678118654752440084436210484903928483593768846, | ||
.38268343236508977172845998403039886676134456248561, | ||
.19509032201612826784828486847702224092769161775195, | ||
.09801714032956060199419556388864184586113667316749, | ||
.04906767432741801425495497694268265831474536302574, | ||
.02454122852291228803173452945928292506546611923944, | ||
.01227153828571992607940826195100321214037231959176, | ||
.00613588464915447535964023459037258091705788631738, | ||
.00306795676296597627014536549091984251894461021344, | ||
.00153398018628476561230369715026407907995486457522, | ||
.00076699031874270452693856835794857664314091945205, | ||
.00038349518757139558907246168118138126339502603495, | ||
.00019174759731070330743990956198900093346887403385, | ||
.00009587379909597734587051721097647635118706561284, | ||
.00004793689960306688454900399049465887274686668768 | ||
}; | ||
static REAL coswrk[20]= | ||
{ | ||
.00000000000000000000000000000000000000000000000000, | ||
.70710678118654752440084436210484903928483593768847, | ||
.92387953251128675612818318939678828682241662586364, | ||
.98078528040323044912618223613423903697393373089333, | ||
.99518472667219688624483695310947992157547486872985, | ||
.99879545620517239271477160475910069444320361470461, | ||
.99969881869620422011576564966617219685006108125772, | ||
.99992470183914454092164649119638322435060646880221, | ||
.99998117528260114265699043772856771617391725094433, | ||
.99999529380957617151158012570011989955298763362218, | ||
.99999882345170190992902571017152601904826792288976, | ||
.99999970586288221916022821773876567711626389934930, | ||
.99999992646571785114473148070738785694820115568892, | ||
.99999998161642929380834691540290971450507605124278, | ||
.99999999540410731289097193313960614895889430318945, | ||
.99999999885102682756267330779455410840053741619428 | ||
}; | ||
static REAL sinwrk[20]= | ||
{ | ||
1.0000000000000000000000000000000000000000000000000, | ||
.70710678118654752440084436210484903928483593768846, | ||
.38268343236508977172845998403039886676134456248561, | ||
.19509032201612826784828486847702224092769161775195, | ||
.09801714032956060199419556388864184586113667316749, | ||
.04906767432741801425495497694268265831474536302574, | ||
.02454122852291228803173452945928292506546611923944, | ||
.01227153828571992607940826195100321214037231959176, | ||
.00613588464915447535964023459037258091705788631738, | ||
.00306795676296597627014536549091984251894461021344, | ||
.00153398018628476561230369715026407907995486457522, | ||
.00076699031874270452693856835794857664314091945205, | ||
.00038349518757139558907246168118138126339502603495, | ||
.00019174759731070330743990956198900093346887403385, | ||
.00009587379909597734587051721097647635118706561284, | ||
.00004793689960306688454900399049465887274686668768 | ||
}; |