Skip to content

Unofficial implementation in Python porting of the book "Algorithms for Optimization" (2019) MIT Press by By Mykel J. Kochenderfer and Tim A. Wheeler

Notifications You must be signed in to change notification settings

vaseline555/Algorithms-for-Optimization-Python

Repository files navigation

Algorithms for Optimization - Python

Unofficial implementation in Python porting of the book "Algorithms for Optimization" (2019); MIT Press by Mykel J. Kochenderfer and Tim A. Wheeler

AlgOptBook

Contents

  • Symbolic differentiation
  • Numerical differentiation
    • Finite difference methods
    • Complex step method
  • Automatic differentiation
    • Forward accumulation
    • Reverse accumulation
  • Unimodality assumption
  • Fibonacci search
  • Golden section search
  • Quadratic fit search
  • Shubert-Piyavskii method
  • Bisection method
  • Line search
  • Approximate line search
    • First Wolfe condition
    • Second Wolfe condition
    • Strong Wolfe condition
  • Trust region method
  • Gradient descent
  • Conjugate gradient descent
  • Momentum
  • Nesterov momentum
  • Adagrad
  • RMSProp
  • Adadelta
  • Adam
  • Hypergradient descent
  • Hypergradient Nesterov momentum

About

Unofficial implementation in Python porting of the book "Algorithms for Optimization" (2019) MIT Press by By Mykel J. Kochenderfer and Tim A. Wheeler

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published