Skip to content
This repository has been archived by the owner on Dec 5, 2024. It is now read-only.

Public repo for 2021 Neurips paper

License

Notifications You must be signed in to change notification settings

vicariousinc/perturb_and_max_product

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Perturb-and-max-product: Sampling and learning in discrete energy-based models

This repo contains code for reproducing the results in the paper Perturb-and-max-product: Sampling and learning in discrete energy-based models accepted at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Getting started

Dependencies can be installed via

pip install -r requirements.txt
python setup.py develop

By default this installs JAX for CPU. If you would like to use JAX with a GPU and specific CUDA version (highly recommended), follow the official instructions here.

Pmap

pmap is the main folder. It contains the following files:

  • mmd.py implements the maximum mean discrepancy metric.
  • small_ising_scoring.py contains useful functions for small tractable Ising models.
  • ising_modeling.py contains learning and sampling algorithms for Ising models using max-product and gibbs variants (in JAX).
  • ising_modeling_lp.py contains similar algorithms using Ecos LP solver.
  • mplp.py implements the max-product linear programming algorithm for Ising models.
  • rbm_modeling.py contains learning and sampling algorithms for RBM models using max-product and gibbs variants (in JAX).
  • rbm_modeling_lp.py contains similar algorithms using Ecos LP solver.
  • conv_or_modeling.py and logical_mpmp.py contain sampling algorithms for the deconvolution experiments in Section 5.6.

Experiments

The experiments folder contains the python scripts used for all the experiments the paper.

The data required for all the experiments has to be generated first via

. experiments/generate_data.sh

and will be automatically stored in a data folder

  • Experiments for Section 5.1 are in exp1_wrongmodel.py.
  • Experiments for Section 5.2 are in exp2_mplp.py.
  • Experiments for Section 5.3 are in exp3_zeros_train.py and exp3_zeros_test.py.
  • Experiments for Section 5.4 are in exp4_c2d_lattice_persistent.py, exp4_c2d_lattice_non_persistent.py, exp_erdos_persistent.py andexp_erdos_non_persistent.py.
  • Experiments for Section 5.5 are in exp5_mnist_train.py, exp5_mnist_test.py and exp5_rbm_2s.py.
  • Experiments for Section 5.6 are in exp6_convor.py.

The results will be automatically stored in a results folder

Figures

The notebook all_paper_plots.ipynb displays all the figures of the main paper. The figures are saved in a paper folder.

About

Public repo for 2021 Neurips paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published