-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
What is the line int over the bnd of Western Europe
Zero. Because all the Poles are in Eastern Europe.
- Loading branch information
1 parent
56c297e
commit 0dd0cf8
Showing
4 changed files
with
350 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
\documentclass[11pt]{article} | ||
\usepackage[margin=1.25in]{geometry} | ||
|
||
\usepackage{graphicx,tikz} | ||
\usepackage{amsmath,amsthm} | ||
\usepackage{amsfonts} | ||
\usepackage{amssymb} | ||
\usepackage{boondox-cal} | ||
\title{ } | ||
|
||
\newtheorem*{thm}{Theorem} | ||
|
||
\begin{document} | ||
%\maketitle | ||
%\date | ||
\begin{center} % centers | ||
\Large{Midterm Practice} % Large makes the font larger, put title inside { } | ||
\end{center} | ||
\begin{center} | ||
Vincent La \\ | ||
Math 122B \\ | ||
August 22, 2017 | ||
\end{center} | ||
|
||
\section{Theorems} | ||
\paragraph{Residues at Poles} | ||
Suppose that a function $f(z)$ can be written in the form | ||
\[f(z) = \frac{\phi{z}}{z - z_0} \] | ||
where $\phi(z)$ is analytic at $z_0$ and $\phi(z_0) \neq 0$. Then, $f(z)$ has a Laurent series representation | ||
\[...\] | ||
and its residue is given by | ||
\[b_1 = \phi(z_0) \] | ||
|
||
\section{Homework} | ||
\begin{enumerate} | ||
\item[1.] | ||
\begin{enumerate} | ||
\item Does the function $f(z) = \frac{e^z}{z}$ have a MacLaurin series representation? | ||
|
||
\paragraph{Solution} Yes. | ||
|
||
First, recall that | ||
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \] | ||
which converges for all $z \in \mathbb{C}$. Therefore, | ||
\[\frac{e^z}{z} = \sum^{\infty}_{n=0} \frac{z^{n - 1}}{n!} \] | ||
which converges for $0 < |z| < \infty$. | ||
|
||
\item Given the Laurent series representation | ||
\[ | ||
\frac{5z - 2}{z(z - 1)} = \frac{3}{z - 1} + 2 - 2(z - 1) + | ||
2(z - 1)^2 - 2(z - 1)^3 + ... | ||
\] | ||
$|z - 1| < 1$ determine whether the isolated singular point $z_0 = 1$ of | ||
$\frac{5z - 2}{z(z - 1)}$ is a pole of order $m$, a simple pole... | ||
|
||
\paragraph{Answer} The point $z_0 = 1$ is a simple pole (pole of order 1). | ||
|
||
\item Given the Laurent series expansion | ||
\[f(z) = \frac{1}{z^2} + \frac{1}{z^2} + 1 + z + z^2 + z^3 + ...\] | ||
which converges for $|z| < 1$, determine the residue of $f(z) = 0$. | ||
|
||
The residue is 0, because there is no $\frac{b_1}{z^1}$ term. | ||
|
||
\item Does there exist a power series $\sum_{n = 0} a_n z^n$ that converges at $z = 2 + 3i$ and diverges at $z = 3 - i$. | ||
|
||
\paragraph{Answer} Yes, and in fact there's an infinite number of them. Here, I will provide one example. | ||
|
||
First, notice that | ||
\[\begin{aligned} | ||
|2 + 3i|^2 &= \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \\ | ||
|3 - i|^2 &= \sqrt{3^2 + (-1)^2} = \sqrt{9 + 1} = \sqrt{10} \\ | ||
\end{aligned}\] | ||
|
||
Now, consider the power series | ||
\[ | ||
\sum^{\infty}_{n=0} (\frac{4}{z})^n | ||
\] | ||
|
||
If $|z| = \sqrt{13}$, then $\frac{4}{z} < 1$ and this series converges. However, if $|z| = \sqrt{10}$, then $\frac{4}{z} > 1$ and this series diverges. | ||
\end{enumerate} | ||
|
||
\item[2.] ... | ||
|
||
\item[3.] | ||
|
||
\begin{enumerate} | ||
\item Give two Laurent series expansions in powers of $z$ for the function | ||
\[f(z) = \frac{1}{z^2(3 - z)} \] | ||
and provide regions of validity. | ||
|
||
\paragraph{Solution about $z = 0$} | ||
First, rewrite $f(z)$ as | ||
\[f(z) = \frac{1}{z^2(3 - z)} = \frac{1}{3z^2} \cdot \frac{1}{1 - \frac{z}{3}} \] | ||
|
||
Now, recall the MacLaurin series | ||
\[\frac{1}{1 - z} = \sum^{\infty}_{n=0} (-1)^nz^n \] | ||
which converges for $|z| < 1$. Applying the change of variables $z = \frac{z}{3}$, | ||
we get | ||
\[\frac{1}{1 - z/3} = \sum^{\infty}_{n=0} (-1)^n (\frac{z}{3})^n \] | ||
which converges for $|\frac{z}{3}| < 1 \implies |z| < 3$. | ||
|
||
\bigskip | ||
|
||
Applying all of this, we get | ||
\[\begin{aligned} | ||
f(z) | ||
&= \frac{1}{3z^2} \cdot \frac{1}{1 - \frac{z}{3}} \\ | ||
&= \frac{1}{3z^2} \cdot \sum^{\infty}_{n=0} (-1)^n (\frac{z}{3})^n \\ | ||
&= \frac{1}{3z^2} \cdot \sum^{\infty}_{n=0} (\frac{-1}{3})^n z^n \\ | ||
&= \frac{1}{3} \cdot \sum^{\infty}_{n=0} (\frac{-1}{3})^n z^{n-2} | ||
& (0 < |z| < 3)\\ | ||
\end{aligned}\] | ||
|
||
\paragraph{Solution about $z = 1$} | ||
\end{enumerate} | ||
|
||
\item[4.] | ||
\begin{enumerate} | ||
\item Find the MacLaurin series representation of $\cos{z} = \frac{e^{iz} - e^{-iz}}{2}$ | ||
|
||
\bigskip | ||
|
||
\[\cos{z} = \sum^{\infty}_{n=0} \frac{(-1)^n (z^{2n})}{(2^n)!} \] | ||
|
||
\begin{proof} | ||
First, calculate and evaluate the first few derivatives of $\cos{z}$ at $z = 0$. | ||
|
||
\[\begin{aligned} | ||
f^{(0)}(0) &= \cos{0} = 1 \\ | ||
f^{(1)}(0) &= -\sin{0} = 0 \\ | ||
f^{(2)}(0) &= -\cos{0} = -1 \\ | ||
f^{(3)}(0) &= \sin{0} = 0 \\ | ||
f^{(4)}(0) &= \cos{0} = 1 \\ | ||
\end{aligned}\] | ||
|
||
As we can see, the derivatives of $\cos{z}$ follow a predictable pattern. Continuing, using the general formula for a MacLaurin series | ||
\[f(z) = \sum a_n z^n\] | ||
implies that | ||
\[\cos{z} = \sum^{\infty}_{\text{$n$ odd}} 0 + | ||
\sum^{\infty}_{\text{$n$ even}} \frac{(-1)^{\frac{n}{2}}}{n!} \cdot (z^n) \] | ||
|
||
Furthermore, if $n$ is even, then there is some integer such that $n$ is divisible by $2$, i.e. $n = 2n$. Using this change of variables | ||
|
||
\[\cos{z} = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n)!} \cdot (z^{2n}) \] | ||
|
||
as we set out to prove. | ||
\end{proof} | ||
|
||
\item Using the MacLaurin series representation for the function $\cos{z}$, find the MacLaurin series representation for $\sin{z}$ | ||
\end{enumerate} | ||
|
||
\item[6.] Find the first three non-zero terms in the MacLaurin expansion of | ||
\[f(z) = \int_0^{z} e^{s^2} ds\] | ||
|
||
\paragraph{Solution} | ||
First, recall the MacLaurin Series | ||
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \] | ||
|
||
Thus, letting $z = s^2$, we get | ||
\[e^{s^2} = \sum^{\infty}_{n=0} \frac{{s^2}^n}{n!} \] | ||
which, like the original series, converges for all $|z| < \infty$. | ||
|
||
Now, | ||
\[\begin{aligned} | ||
\int_0^z e^{s^2} ds | ||
&= \int_0^z \sum^{\infty}_{n=0} \frac{{s^2}^n}{n!} ds \\ | ||
&= \sum^{\infty}_{n=0} \frac{ | ||
\int_0^z {s^2}^n ds }{n!} & \text{Integrate term by term} \\ | ||
&= \sum^{\infty}_{n=0} \frac{s^{2n + 1}}{(2n + 1) \cdot n!} \\ | ||
\end{aligned}\] | ||
|
||
Therefore, the first three non-zero terms are | ||
\[ | ||
\frac{s^{2(0) + 1}}{(2\cdot0 + 1) \cdot 0!} + | ||
\frac{s^{2(0) + 1}}{(2\cdot1 + 1) \cdot 1!} + | ||
\frac{s^{2(0) + 1}}{(2\cdot2 + 1) \cdot 2!} | ||
\] | ||
|
||
\item[8.] Find residue at $z = 0$ of $\frac{1}{z^2 + z^3}$. | ||
|
||
First, recall the MacLaurin series | ||
\[ \frac{1}{1+z} = \sum^{\infty}_{n=0} (-1)^n z^n \] | ||
which converges for $|z| <1$. Thus, | ||
\[\begin{aligned} | ||
\frac{1}{z^2} \cdot \frac{1}{1+z} | ||
&= \sum^{\infty}_{n=0} (-1)^n z^{n-2} & (|z| < 1) \\ | ||
&= (-1)^0 z^{-2} + (-1)^1 z^{-1} + (-1)^2 z^0 + ... \\ | ||
&= z^{-2} - \mathbf{z^{-1}} + ... \\ | ||
\end{aligned}\] | ||
|
||
Therefore, $Res_{z=0} f(z) = 1$. | ||
|
||
\item[9.] | ||
\begin{enumerate} | ||
\item Use Cauchy's Residue Theorem to evaluate the integral around the circle | ||
$|z| = 3$ with a positive orientation fo $z^3 \cdot \exp{\frac{1}{z^2}}$ | ||
|
||
\paragraph{Solution} To begin, we have an isolated singularity at $z = 0$. Then, recall the MacLaurin Series | ||
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \] | ||
|
||
Using the change of variables $z = \frac{1}{z^2}$, we get | ||
\[\begin{aligned} | ||
z^3 \cdot \exp{\frac{1}{z^2}} | ||
&= z^3 \sum^{\infty}_{n=0} \frac{(\frac{1}{z^2})^n | ||
}{n!} \\ | ||
&= z^3 \sum^{\infty}_{n=0} \frac{z^{-2n}}{n!} \\ | ||
&= \sum^{\infty}_{n=0} \frac{z^{-2n + 3}}{n!} \\ | ||
\end{aligned}\] | ||
|
||
Expanding this series, we get | ||
\[\frac{z^3}{0!} + \frac{z^{-2 + 3}}{1!} + \mathbf{\frac{z^{-4+3}}{2!}} + ... | ||
\] | ||
|
||
Therefore our residue is $2! = 2$. | ||
|
||
\item ... | ||
\end{enumerate} | ||
|
||
\item[10.] Write the principal part of the following functions at their singular point and determine whether that point is a pole, a removable singular point ,or an essential singular point: | ||
|
||
\begin{enumerate} | ||
\item $z \exp{\frac{1}{z^3}} $ | ||
|
||
\paragraph{Solution} First, notice that we have a singular point at $z = 0$. Then, recall the MacLaurin Series | ||
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \] | ||
|
||
Using the change of variables $z = \frac{1}{z^3}$, we get | ||
\[\begin{aligned} | ||
z \exp{\frac{1}{z^3}} | ||
&= z \cdot \sum^{\infty}_{n=0} \frac{( \frac{1}{z^3} )^n}{n!} \\ | ||
&= z \cdot \sum^{\infty}_{n=0} \frac{z^{-3n}}{n!} \\ | ||
&= \sum^{\infty}_{n=0} \frac{z^{-3n + 1}}{n!} \\ | ||
\end{aligned}\] | ||
|
||
Expanding the series, we get | ||
\[\frac{z^1}{0!} + \frac{z^{-3 + 1}}{1!} + \frac{z^{-6 + 1}}{2!} + ... \] | ||
|
||
Because this series has an infinite number of negative terms, it is an essential singular point. | ||
|
||
\item $\frac{z^3}{1 + z} $ | ||
|
||
First, notice that $f(z)$ has a singularity when $z + 1 = 0 \implies z = -1$. Then, recall the MacLaurin Series | ||
\[ | ||
\frac{1}{1 + z} = \sum^{\infty}_{n=0} (-1)^n z^n | ||
\] | ||
which converges for $|z| < 1$. Therefore, | ||
\[\begin{aligned} | ||
z^3 \cdot \frac{1}{1 + z} | ||
&= z^3 \cdot \sum^{\infty}_{n=0} (-1)z^n & (|z| < 1) \\ | ||
&= \sum^{\infty}_{n=0} (-1)z^{n + 3} \\ | ||
\end{aligned}\] | ||
|
||
By looking at the exponents on $z$ within the sum, we can tell that this series has an infinite number of terms with positive exponents but none with negative ones. Therefore, $z = -1$ is a removal singular point. | ||
\end{enumerate} | ||
|
||
\item[11.] Show that the singular point of each function is a pole and determine its order $m$ and the corresponding residue | ||
|
||
\begin{enumerate} | ||
\item $\frac{z^2 + 2}{z^2 - 1}$ | ||
|
||
\paragraph{Solution} First, notice that this function has two singular points that occur when | ||
\[\begin{aligned} | ||
z^2 - 1 &= 0 \\ | ||
z^2 &= 1 \\ | ||
z &= \pm \sqrt{1} \\ | ||
z &= \pm 1 | ||
\end{aligned}\] | ||
|
||
Also, I will be using the fact that | ||
\[(z - 1)(z + 1) = z^2 - 1\] | ||
|
||
\begin{enumerate} | ||
\item $\mathbf{z = 1}$ | ||
First, rewrite $f(z)$ as follows | ||
\[\begin{aligned} | ||
\frac{z^2 + 2}{z^2 - 1} | ||
&= \frac{z^2 + 2}{(z - 1)(z + 1)} \\ | ||
&= \frac{z^2 + 2}{(z - 1)(z + 1)} \cdot | ||
\frac{\frac{1}{z + 1}}{\frac{1}{z + 1}} \\ | ||
&= \frac{ \mathbf{\frac{z^2 + 2}{z + 1}} }{z - 1} \\ | ||
\end{aligned}\] | ||
|
||
Now, call the bolded part $\phi(z)$. Furthermore, notice that | ||
$\phi(z)$ is analytic at $z = 1$ and that | ||
\[ | ||
\phi(1) = \frac{1^2 + 2}{1 + 1} = \frac{3}{2} \neq 0 | ||
\] | ||
|
||
Therefore, this point is a simple pole with residue $\frac{3}{2}$. | ||
|
||
\item $\mathbf{z = -1}$ | ||
\end{enumerate} | ||
|
||
\item $(\frac{z}{3z + 5})^3$ | ||
\end{enumerate} | ||
|
||
\item[12.] Evaluate the following integrals | ||
|
||
\end{enumerate} | ||
\end{document} |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters