-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9a9bfd7
commit 3ad9301
Showing
6 changed files
with
217 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
\documentclass[11pt]{article} | ||
\usepackage[margin=1.25in]{geometry} | ||
|
||
\usepackage{graphicx,tikz} | ||
\usepackage{amsmath,amsthm} | ||
\usepackage{amsfonts} | ||
\usepackage{amssymb} | ||
\usepackage{boondox-cal} | ||
\title{ } | ||
|
||
\newtheorem*{thm}{Theorem} | ||
|
||
\begin{document} | ||
%\maketitle | ||
%\date | ||
\begin{center} % centers | ||
\Large{Homework 6} % Large makes the font larger, put title inside { } | ||
\end{center} | ||
\begin{center} | ||
Vincent La \\ | ||
Math 122B \\ | ||
August 22, 2017 | ||
\end{center} | ||
|
||
\section{Homework} | ||
\begin{enumerate} | ||
\item Write the principal part of the following functions at the singular point and determine whether that point is a pole, a removable singular point, or an essential singular point: | ||
\begin{enumerate} | ||
\item $\frac{z^2}{1 + z}$ | ||
\paragraph{Solution} | ||
|
||
This function has a singular point at $z = -1$. | ||
First, we will find the Laurent series expansion. Notice that, | ||
\[\begin{aligned} | ||
z^2 | ||
&= [(z + 1)^2 - 2z - 1] \\ | ||
&= [(z + 1)^2 - 2(z + 1) + 1] \\ | ||
\end{aligned}\] | ||
|
||
Therefore, | ||
\[ | ||
\begin{aligned} | ||
\frac{z^2}{1 + z} | ||
&= z^2 \cdot \frac{1}{1 + z} \\ | ||
&= [(z + 1)^2 - 2(z + 1) + 1] \cdot \frac{1}{1 + z} \\ | ||
&= \frac{(z + 1)^2 - 2(z + 1) + 1}{1 + z} \\ | ||
&= (z + 1) - 2 + \frac{1}{1 + z} | ||
\end{aligned} \] | ||
|
||
By inspection, the principal part of this function is | ||
\[\frac{1}{1 + z}\] | ||
so $z = -1$ is a pole of order 1. | ||
|
||
\item $\frac{\sin{z}}{z}$ | ||
\paragraph{Solution} | ||
First, we will try to find a Laurent series representation for $f(z)$. | ||
|
||
\[\begin{aligned} | ||
\frac{\sin{z}}{z} | ||
&= \frac{1}{z} \cdot \sin{z} \\ | ||
&= \frac{1}{z} \cdot \sum^{\infty}_{n=0} (-1)^n \frac{z^{2n + 1}}{(2n + 1!)} | ||
& (|z| < \infty) \\ | ||
&= \frac{1}{z} \cdot [(-1)^0 \cdot \frac{z^1}{1!} + | ||
(-1)^1 \frac{z^3}{3!} + (-1)^2\frac{z^5}{5!} + ...] & \text{Expanding the series} \\ | ||
\end{aligned}\] | ||
|
||
By inspection, this Laurent Series has no terms with negative exponents and is really just a regular power series. Therefore, it is a removable singular point. | ||
\end{enumerate} | ||
|
||
\item Show that the singular point of each function is a pole and determine its order $m$ and find the corresponding residue: | ||
\begin{enumerate} | ||
\item $(\frac{z}{2z + 1})^3$ | ||
\paragraph{Solution} | ||
First, this function has singularities whenever $(2z + 1)^3 = 0$, implying $z = -\frac{1}{2}$ is a singular point. | ||
|
||
Now, notice that | ||
\[\begin{aligned} | ||
\frac{z}{2z + 1} | ||
&= \frac{z}{2} \cdot \frac{1}{z + \frac{1}{2}} \\ | ||
\end{aligned}\] | ||
|
||
Furthermore, because $z = (z + \frac{1}{2}) - \frac{1}{2}$, the above is equivalent to | ||
\[\begin{aligned} | ||
\frac{z}{2z + 1} | ||
&= \frac{(z + \frac{1}{2}) - \frac{1}{2}}{2} \cdot | ||
\frac{1}{z + \frac{1}{2}} \\ | ||
&= \frac{1}{2} \cdot \frac{ | ||
(z + \frac{1}{2}) - \frac{1}{2}}{ | ||
z + \frac{1}{2}} \\ | ||
&= \frac{1}{2} \cdot [1 - \frac{0.5}{z + \frac{1}{2}}] \\ | ||
\end{aligned}\] | ||
|
||
Finally, we get | ||
\[\frac{1}{2} - \frac{0.25}{z + \frac{1}{2}}\] | ||
|
||
Therefore, because there is only $(z - z_0)^n$ term with an exponent of $-1$, this is a pole of order 1 with residue 0.25. | ||
|
||
\item $\frac{\exp{z}}{z^2 + \pi^2}$ | ||
\paragraph{Solution} | ||
Consider $z = \pi i$. At this point, the denominator $z^2 + \pi^2 = \pi^2 \cdot i^2 + \pi^2 = 0$, so $\pi i$ is a singular point. | ||
|
||
\bigskip | ||
|
||
First, let us find the Taylor Series of $\exp(z)$ about $z = \pi i$. Because | ||
$\frac{d}{dz} \exp(z) = \exp(z)$, and $\exp(\pi i) = -1$, | ||
\[\begin{aligned} | ||
\frac{f^{(n)}(z_0)}{n!} | ||
&= \frac{\exp(\pi i)}{n!} \\ | ||
&= \frac{-1}{n!} \\ | ||
\end{aligned}\] | ||
|
||
Thus, the Taylor Series of $\exp(z)$ centered at $\pi i$ is | ||
\[ f(z) = \sum^{\infty}_{n=0} \frac{-1}{n!} (z - \pi i)^n \] | ||
which converges for all $z \in \mathbb{C}$. | ||
|
||
Notice that | ||
\[(z + \pi i)(z - \pi i) | ||
= (z^2 - z\pi i + z\pi i - \pi^2 i^2) | ||
= z^2 + \pi^2 \] | ||
|
||
Therefore, | ||
\[\begin{aligned} | ||
\frac{\exp{z}}{z^2 + \pi^2} | ||
&= \frac{1}{(z + \pi i)(z - \pi i)} \cdot | ||
\sum^{\infty}_{n=0} \frac{-1}{n!} (z - \pi i)^n \\ | ||
&= \frac{1}{z + \pi i} \cdot | ||
\sum^{\infty}_{n=0} \frac{-(z - \pi i)^{n - 1}}{n!} \\ | ||
\end{aligned}\] | ||
|
||
And the completion of this solution has been left as an exercise for the reader. | ||
\end{enumerate} | ||
\end{enumerate} | ||
\end{document} |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
\documentclass[]{article} | ||
\usepackage[margin=1.25in]{geometry} | ||
\usepackage{amsmath,amsthm} | ||
\usepackage{graphicx,tikz} | ||
|
||
%opening | ||
\title{Common Power Series} | ||
\author{Vincent La} | ||
|
||
\begin{document} | ||
|
||
\maketitle | ||
|
||
|
||
\end{document} |
69 changes: 69 additions & 0 deletions
69
Summaries/Poles, Removable and Essential Singular Points.tex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
\documentclass[]{article} | ||
\usepackage[margin=1.25in]{geometry} | ||
\usepackage{amsmath,amsthm} | ||
\usepackage{graphicx,tikz} | ||
|
||
%opening | ||
\title{Poles, Removable and Essential Singular Points} | ||
\author{Vincent La} | ||
|
||
\begin{document} | ||
|
||
\maketitle | ||
|
||
\section{Definitions} | ||
\paragraph{Principal Part} The terms in the Laurent series expansion of a function that contain negative exponents | ||
|
||
\paragraph{Pole} A singular point that contains only a finite number of terms with negative exponents | ||
|
||
\paragraph{Essential Singular Point} A singular point with an infinite number of terms with negative exponents | ||
|
||
\paragraph{Removable Singular Point} A singular point whose Laurent expansion contains only terms with positive exponents. All removable singular points have a residue of 0. | ||
|
||
\section{Exercises} | ||
\textbf{Source:} Complex Variables and Applications, Section 56 | ||
|
||
\begin{enumerate} | ||
\item[2.] Show that the singular point of each of the following functions is a pole. Determine the order $m$ of that pole and the corresponding residue $B$. | ||
|
||
\begin{enumerate} | ||
\item | ||
\item $\frac{1 - \exp{2z}}{z^4}$ | ||
|
||
\paragraph{Solution} | ||
Recall the MacLaurin series | ||
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} (|z| < 1) \] | ||
|
||
Then, write | ||
\[\begin{aligned} | ||
\frac{1 - \exp{2z}}{z^4} | ||
&= \frac{1}{z^4} - \frac{\exp{2z}}{z^4} \\ | ||
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{\frac{(2z)^n}{n!}}{z^4} \\ | ||
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{(2z)^n}{n! \cdot z^4} \\ | ||
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{2^n z^n}{n! \cdot z^4} \\ | ||
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{2^n z^{ n - 4 }}{n!} \\ | ||
\end{aligned}\] | ||
|
||
Expanding the series, we get | ||
\[\begin{aligned} | ||
\frac{1 - \exp{2z}}{z^4} | ||
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{2^n z^{ n - 4 }}{n!} \\ | ||
&= \frac{1}{z^4} - [ \frac{2^0z^{-4}}{0!} + \frac{{2^1}z^{-3}}{1!} | ||
+ \frac{2^2z^{-2}}{2!} + \mathbf{ \frac{2^3 z^{-1}}{3!} } + ... ] \\ | ||
\end{aligned}\] | ||
|
||
Therefore, the $b_1$ term of the Laurent expansion (and therefore our residue) is | ||
$-\frac{2^3}{3!} = -\frac{8}{6} = -\frac{4}{3}$. | ||
|
||
\paragraph{Answers} | ||
(Provided by the book) | ||
\begin{enumerate} | ||
\item $m = 1, B = \frac{-1}{2}$, | ||
\item $m = 3, B = \frac{-4}{3}$ | ||
\item $m = 2, B = 2e^2$ | ||
\end{enumerate} | ||
|
||
\end{enumerate} | ||
\end{enumerate} | ||
|
||
\end{document} |
Binary file not shown.