Skip to content

Commit

Permalink
Added Stuff on Principal Part
Browse files Browse the repository at this point in the history
  • Loading branch information
vincentlaucsb committed Aug 23, 2017
1 parent 9a9bfd7 commit 3ad9301
Show file tree
Hide file tree
Showing 6 changed files with 217 additions and 0 deletions.
Binary file not shown.
133 changes: 133 additions & 0 deletions 122B Homework 6 - Principal Part of a Function.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}

\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }

\newtheorem*{thm}{Theorem}

\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 6} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122B \\
August 22, 2017
\end{center}

\section{Homework}
\begin{enumerate}
\item Write the principal part of the following functions at the singular point and determine whether that point is a pole, a removable singular point, or an essential singular point:
\begin{enumerate}
\item $\frac{z^2}{1 + z}$
\paragraph{Solution}

This function has a singular point at $z = -1$.
First, we will find the Laurent series expansion. Notice that,
\[\begin{aligned}
z^2
&= [(z + 1)^2 - 2z - 1] \\
&= [(z + 1)^2 - 2(z + 1) + 1] \\
\end{aligned}\]

Therefore,
\[
\begin{aligned}
\frac{z^2}{1 + z}
&= z^2 \cdot \frac{1}{1 + z} \\
&= [(z + 1)^2 - 2(z + 1) + 1] \cdot \frac{1}{1 + z} \\
&= \frac{(z + 1)^2 - 2(z + 1) + 1}{1 + z} \\
&= (z + 1) - 2 + \frac{1}{1 + z}
\end{aligned} \]

By inspection, the principal part of this function is
\[\frac{1}{1 + z}\]
so $z = -1$ is a pole of order 1.

\item $\frac{\sin{z}}{z}$
\paragraph{Solution}
First, we will try to find a Laurent series representation for $f(z)$.

\[\begin{aligned}
\frac{\sin{z}}{z}
&= \frac{1}{z} \cdot \sin{z} \\
&= \frac{1}{z} \cdot \sum^{\infty}_{n=0} (-1)^n \frac{z^{2n + 1}}{(2n + 1!)}
& (|z| < \infty) \\
&= \frac{1}{z} \cdot [(-1)^0 \cdot \frac{z^1}{1!} +
(-1)^1 \frac{z^3}{3!} + (-1)^2\frac{z^5}{5!} + ...] & \text{Expanding the series} \\
\end{aligned}\]

By inspection, this Laurent Series has no terms with negative exponents and is really just a regular power series. Therefore, it is a removable singular point.
\end{enumerate}

\item Show that the singular point of each function is a pole and determine its order $m$ and find the corresponding residue:
\begin{enumerate}
\item $(\frac{z}{2z + 1})^3$
\paragraph{Solution}
First, this function has singularities whenever $(2z + 1)^3 = 0$, implying $z = -\frac{1}{2}$ is a singular point.

Now, notice that
\[\begin{aligned}
\frac{z}{2z + 1}
&= \frac{z}{2} \cdot \frac{1}{z + \frac{1}{2}} \\
\end{aligned}\]

Furthermore, because $z = (z + \frac{1}{2}) - \frac{1}{2}$, the above is equivalent to
\[\begin{aligned}
\frac{z}{2z + 1}
&= \frac{(z + \frac{1}{2}) - \frac{1}{2}}{2} \cdot
\frac{1}{z + \frac{1}{2}} \\
&= \frac{1}{2} \cdot \frac{
(z + \frac{1}{2}) - \frac{1}{2}}{
z + \frac{1}{2}} \\
&= \frac{1}{2} \cdot [1 - \frac{0.5}{z + \frac{1}{2}}] \\
\end{aligned}\]

Finally, we get
\[\frac{1}{2} - \frac{0.25}{z + \frac{1}{2}}\]

Therefore, because there is only $(z - z_0)^n$ term with an exponent of $-1$, this is a pole of order 1 with residue 0.25.

\item $\frac{\exp{z}}{z^2 + \pi^2}$
\paragraph{Solution}
Consider $z = \pi i$. At this point, the denominator $z^2 + \pi^2 = \pi^2 \cdot i^2 + \pi^2 = 0$, so $\pi i$ is a singular point.

\bigskip

First, let us find the Taylor Series of $\exp(z)$ about $z = \pi i$. Because
$\frac{d}{dz} \exp(z) = \exp(z)$, and $\exp(\pi i) = -1$,
\[\begin{aligned}
\frac{f^{(n)}(z_0)}{n!}
&= \frac{\exp(\pi i)}{n!} \\
&= \frac{-1}{n!} \\
\end{aligned}\]

Thus, the Taylor Series of $\exp(z)$ centered at $\pi i$ is
\[ f(z) = \sum^{\infty}_{n=0} \frac{-1}{n!} (z - \pi i)^n \]
which converges for all $z \in \mathbb{C}$.

Notice that
\[(z + \pi i)(z - \pi i)
= (z^2 - z\pi i + z\pi i - \pi^2 i^2)
= z^2 + \pi^2 \]

Therefore,
\[\begin{aligned}
\frac{\exp{z}}{z^2 + \pi^2}
&= \frac{1}{(z + \pi i)(z - \pi i)} \cdot
\sum^{\infty}_{n=0} \frac{-1}{n!} (z - \pi i)^n \\
&= \frac{1}{z + \pi i} \cdot
\sum^{\infty}_{n=0} \frac{-(z - \pi i)^{n - 1}}{n!} \\
\end{aligned}\]

And the completion of this solution has been left as an exercise for the reader.
\end{enumerate}
\end{enumerate}
\end{document}
Binary file added Summaries/Common Power Series.pdf
Binary file not shown.
15 changes: 15 additions & 0 deletions Summaries/Common Power Series.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
\documentclass[]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{amsmath,amsthm}
\usepackage{graphicx,tikz}

%opening
\title{Common Power Series}
\author{Vincent La}

\begin{document}

\maketitle


\end{document}
69 changes: 69 additions & 0 deletions Summaries/Poles, Removable and Essential Singular Points.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
\documentclass[]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{amsmath,amsthm}
\usepackage{graphicx,tikz}

%opening
\title{Poles, Removable and Essential Singular Points}
\author{Vincent La}

\begin{document}

\maketitle

\section{Definitions}
\paragraph{Principal Part} The terms in the Laurent series expansion of a function that contain negative exponents

\paragraph{Pole} A singular point that contains only a finite number of terms with negative exponents

\paragraph{Essential Singular Point} A singular point with an infinite number of terms with negative exponents

\paragraph{Removable Singular Point} A singular point whose Laurent expansion contains only terms with positive exponents. All removable singular points have a residue of 0.

\section{Exercises}
\textbf{Source:} Complex Variables and Applications, Section 56

\begin{enumerate}
\item[2.] Show that the singular point of each of the following functions is a pole. Determine the order $m$ of that pole and the corresponding residue $B$.

\begin{enumerate}
\item
\item $\frac{1 - \exp{2z}}{z^4}$

\paragraph{Solution}
Recall the MacLaurin series
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} (|z| < 1) \]

Then, write
\[\begin{aligned}
\frac{1 - \exp{2z}}{z^4}
&= \frac{1}{z^4} - \frac{\exp{2z}}{z^4} \\
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{\frac{(2z)^n}{n!}}{z^4} \\
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{(2z)^n}{n! \cdot z^4} \\
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{2^n z^n}{n! \cdot z^4} \\
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{2^n z^{ n - 4 }}{n!} \\
\end{aligned}\]

Expanding the series, we get
\[\begin{aligned}
\frac{1 - \exp{2z}}{z^4}
&= \frac{1}{z^4} - \sum^{\infty}_{n=0} \frac{2^n z^{ n - 4 }}{n!} \\
&= \frac{1}{z^4} - [ \frac{2^0z^{-4}}{0!} + \frac{{2^1}z^{-3}}{1!}
+ \frac{2^2z^{-2}}{2!} + \mathbf{ \frac{2^3 z^{-1}}{3!} } + ... ] \\
\end{aligned}\]

Therefore, the $b_1$ term of the Laurent expansion (and therefore our residue) is
$-\frac{2^3}{3!} = -\frac{8}{6} = -\frac{4}{3}$.

\paragraph{Answers}
(Provided by the book)
\begin{enumerate}
\item $m = 1, B = \frac{-1}{2}$,
\item $m = 3, B = \frac{-4}{3}$
\item $m = 2, B = 2e^2$
\end{enumerate}

\end{enumerate}
\end{enumerate}

\end{document}
Binary file added Summaries/Poles.pdf
Binary file not shown.

0 comments on commit 3ad9301

Please sign in to comment.