Author: Victor Skobov (v.skobov@fuji.waseda.jp)
Abstract: The Hamburg Notation System (HamNoSys) was developed for movement annotation of any sign language (SL) and can be used to produce signing animations for a virtual avatar with the JASigning platform. This provides the potential to use HamNoSys, i.e., strings of characters, as a representation of an SL corpus instead of video material. Processing strings of characters instead of images can significantly contribute to sign language research. However, the complexity of HamNoSys makes it difficult to annotate without a lot of time and effort. Therefore annotation has to be automatized. This work proposes a conceptually new approach to this problem. It includes a new tree representation of the HamNoSys grammar that serves as a basis for the generation of grammatical training data and classification of complex movements using machine learning. Our automatic annotation system relies on HamNoSys grammar structure and can potentially be used on already existing SL corpora. It is retrainable for specific settings such as camera angles, speed, and gestures. Our approach is conceptually different from other SL recognition solutions and offers a developed methodology for future research.
Link to Paper
Bib Citation:
@inproceedings{skobov-lepage-2020-video,
title = "Video-to-{H}am{N}o{S}ys Automated Annotation System",
author = "Skobov, Victor and
Lepage, Yves",
booktitle = "Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association (ELRA)",
url = "https://www.aclweb.org/anthology/2020.signlang-1.34",
pages = "209--216",
abstract = "The Hamburg Notation System (HamNoSys) was developed for movement annotation of any sign language (SL) and can be used to produce signing animations for a virtual avatar with the JASigning platform. This provides the potential to use HamNoSys, i.e., strings of characters, as a representation of an SL corpus instead of video material. Processing strings of characters instead of images can significantly contribute to sign language research. However, the complexity of HamNoSys makes it difficult to annotate without a lot of time and effort. Therefore annotation has to be automatized. This work proposes a conceptually new approach to this problem. It includes a new tree representation of the HamNoSys grammar that serves as a basis for the generation of grammatical training data and classification of complex movements using machine learning. Our automatic annotation system relies on HamNoSys grammar structure and can potentially be used on already existing SL corpora. It is retrainable for specific settings such as camera angles, speed, and gestures. Our approach is conceptually different from other SL recognition solutions and offers a developed methodology for future research.",
language = "English",
ISBN = "979-10-95546-54-2",
}