Detect gene-gene interaction/epistasis by using multivariate phenotypes and MDR
All source codes were listed in file "Multi-QMDR.R" for implemeting Multi-QMDR
Yu, Wenbao, M-S. Kwon, and T. Park. "Multivariate Quantitative Multifactor Dimensionality Reduction for Detecting Gene-Gene Interactions." Human heredity 79.3-4 (2015): 168-181.
Try run_example.R to get a quick start, and an example data was provided too
In R:
source("Multi-QMDR.R")
multi_qmdr(phes, snp.mat, method = 'FPC', K = 2, nperm = 0, test.type = 'ht2',
sele.type = 'cvc', kfolds = 10, covrt = NULL)
-
inputs:
- phes ---- phenotypes, n times d matrix
- snp.mat ---- snp matrix, n times p matrix
- method ---- one of 'FPC', 'WPC', 'WSPC'; if you just use single phenotype (qmdr), specify method=i, which will use qmdr and the ith column of phes as phenotype; defalt 'FPC'
- K ---- K-way interactions, default 2
- nperm ---- permutation times for calculating pvalue for the best model (0 if pvalue if not needed; default)
- test.type ---- test statistics, could be 'ht2' or 't', corresponding to hotelling t2 test and t test; default 'ht2'
- sele.type ---- the way to tune the best model, 'cvc' or 'score'; default 'cvc'
- kfolds ---- k-fold cross validation; default 10
- covrt ---- the covariate matrix; default NULL (no covariates)
-
output: a list with elements as follows
- best_ksnps ---- the snp ids for the best model
- cvc ---- the cvc number of the best model (out of 10)
- score ---- the test statstics for the best model
- pvalue ---- the corresponding empirical pvalue for the best model