Skip to content
/ CML Public
forked from anonymousCML/CML

The implementation of Contrastive Meta Learning with Behavior Multiplicity forRecommendation

Notifications You must be signed in to change notification settings

weiwei1206/CML

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CML

This repository contains PyTorch codes and datasets for the paper:

Wei, Wei and Huang, Chao and Xia, Lianghao and Xu, Yong and Zhao, Jiashu and Yin, Dawei. Contrastive Meta Learning with Behavior Multiplicity forRecommendation. Paper in arXiv.

Introduction

Contrastive Meta Learning (CML) leverages multi-behavior learning paradigm to model diverse and multiplex user-item relationships, as well as tackling the label scarcity problem for target behaviors. The designed multi-behavior contrastive task is to capture the transferable user-item relationships from multi-typed user behavior data heterogeneity. And the proposed meta contrastive encoding scheme allows CML to preserve the personalized multi-behavior characteristics, so as to be reflective of the diverse behavior-aware user preference under a customized self-supervised framework.

Citation

@inproceedings{wei2022contrastive,
  title={Contrastive meta learning with behavior multiplicity for recommendation},
  author={Wei, Wei and Huang, Chao and Xia, Lianghao and Xu, Yong and Zhao, Jiashu and Yin, Dawei},
  booktitle={Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining},
  pages={1120--1128},
  year={2022}
}

Environment

The codes of CML are implemented and tested under the following development environment:

  • Python 3.6
  • torch==1.8.1+cu111
  • scipy==1.6.2
  • tqdm==4.61.2

Datasets

Raw data:

Processed data:

  • The processed IJCAI are under the /datasets folder.

Usage

The command to train CML on the Tmall/IJCAI/Retailrocket datasets are as follows. The commands specify the hyperparameter settings that generate the reported results in the paper.

  • Tmall
python main.py --path=./datasets/ --dataset=Tmall --opt_base_lr=1e-3 --opt_max_lr=5e-3 --opt_weight_decay=1e-4 --meta_opt_base_lr=1e-4 --meta_opt_max_lr=2e-3 --meta_opt_weight_decay=1e-4 --meta_lr=1e-3 --batch=8192 --meta_batch=128 --SSL_batch=18
  • IJCAI
python main.py --path=./datasets/ --dataset=IJCAI_15 --sampNum=10 --opt_base_lr=1e-3 --opt_max_lr=2e-3 --opt_weight_decay=1e-4 --meta_opt_base_lr=1e-4 --meta_opt_max_lr=1e-3 --meta_opt_weight_decay=1e-4 --meta_lr=1e-3 --batch=8192 --meta_batch=128 --SSL_batch=30 
  • Retailrocket
python main.py --path=./datasets/ --dataset='retailrocket' --sampNum=40 --lr=3e-4 --opt_base_lr=1e-4 --opt_max_lr=1e-3 --opt_weight_decay=1e-4 --opt_weight_decay=1e-4 --meta_opt_base_lr=1e-4 --meta_opt_max_lr=1e-3 --meta_opt_weight_decay=1e-3 --meta_lr=1e-3 --batch=2048 --meta_batch=128 --SSL_batch=15

It will be released again in few days in the optimized code version.

About

The implementation of Contrastive Meta Learning with Behavior Multiplicity forRecommendation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%