-
Notifications
You must be signed in to change notification settings - Fork 0
/
gaussian_diffusion.py
227 lines (183 loc) · 10.3 KB
/
gaussian_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from unet import *
def normalize_to_neg_one_to_one(img):
return img * 2 - 1
def unnormalize_to_zero_to_one(t):
return (t + 1) * 0.5
def extract(a, t, x_shape):
b, *_ = t.shape
t = t.to("cuda")
a = a.to("cuda")
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def cosine_beta_schedule(timesteps, s = 0.008):
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5)**2
alphas_cumprod = alphas_cumprod/alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:]/alphas_cumprod[:-1])
return torch.clip(betas, 0.0001, 0.9999)
class GaussianDiffusion(nn.Module):
def __init__(self, model, *, image_size, batch_size = 30, timesteps = 1000, sampling_timesteps = None, loss_type = 'l2', pred_objective = 'pred_noise', p2_loss_weight_gamma = 0, p2_loss_weight_k = 1):
super().__init__()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = model
self.ema = None
self.channels = self.model.channels
self.image_size = 64
self.objective = pred_objective
self.ddim_sampling_eta = 0
self.sampling_timesteps = 250
self.timesteps = timesteps
betas = cosine_beta_schedule(timesteps = timesteps)
alphas = 1 - betas
alphas_cumprod = torch.cumprod(alphas, axis = 0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.0)
self.loss_type = loss_type
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float16))
register_buffer('betas', betas)
register_buffer('alphas_cumprod', alphas_cumprod)
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
register_buffer('posterior_variance', posterior_variance)
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
snr = alphas_cumprod / (1 - alphas_cumprod)
maybe_clipped_snr = snr.clone()
if pred_objective == 'pred_noise':
register_buffer('loss_weight', maybe_clipped_snr / snr)
elif pred_objective == 'pred_x0':
register_buffer('loss_weight', maybe_clipped_snr)
elif pred_objective == 'pred_v':
register_buffer('loss_weight', maybe_clipped_snr / (snr + 1))
self.normalize = normalize_to_neg_one_to_one
self.unnormalize = unnormalize_to_zero_to_one
def predict_start_from_noise(self, x_t, t, noise):
return (extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise)
def predict_noise_from_start(self, x_t, t, x0):
return ((extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape))
def predict_start_from_v(self, x_t, t, noise):
return (extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise - extract(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t)
def predict_v(self, x_start, t, noise):
return (extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise - extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def model_predictions(self, x, t, cond_emb = None, cond_scale = 5, clip_x_start = False, rederive_pred_noise = False):
model_output = self.model.forward_with_cond_scale(x, t,cond_emb, cond_scale = cond_scale)
maybe_clip = partial(torch.clamp, min = -1., max = 1.) if clip_x_start else identity
if self.objective == "pred_noise":
pred_noise = model_output
x_start = self.predict_start_from_noise(x, t, pred_noise)
x_start = maybe_clip(x_start)
if clip_x_start and rederive_pred_noise:
pred_noise = self.predict_noise_from_start(x, t, x_start)
else:
raise ValueError(f'unknown objective')
return ModelPrediction(pred_noise, x_start)
def p_mean_variance(self, x, t, cond_emb = None, cond_scale = 5, clip_denoised = True):
preds = self.model_predictions(x, t, cond_emb, cond_scale)
x_start = preds.pred_x_start
print(clip_denoised)
if clip_denoised:
s = torch.quantile(
rearrange(x_start, 'b ... -> b (...)').abs(),
0.95,
dim = -1
)
s.clamp_(min = 1.)
s = right_pad_dims_to(x_start, s)
x_start = x_start.clamp(-s, s) / s
else:
x_start.clamp_(-1., 1.)
mean, post_var, post_log_var = self.q_posterior(x_start = x_start, x_t = x, t = t)
return mean, post_var, post_log_var, x_start
@torch.no_grad()
def p_sample(self, x, t, cond_emb, cond_scale = 5, clip_denoised = True):
batch, *_, device = *x.shape, x.device
batched_times = torch.full((x.shape[0],), t, device = x.device, dtype = torch.long)
noise = torch.randn_like(x) if t>0 else 0
model_mean, _, model_log_var, x_start = self.p_mean_variance(x, t = batched_times, cond_scale = cond_scale, cond_emb = cond_emb, clip_denoised = clip_denoised)
pred = model_mean + (0.5 * model_log_var).exp() * noise
return pred, x_start
@torch.no_grad()
def p_sample_loop(self, cond_emb, shape, cond_scale = 5):
device = self.device
batch = shape[0]
img = torch.randn(shape, device = device)
x_start = None
for t in tqdm(reversed(range(0, self.timesteps)), desc = 'sampling loop time step', total = self.timesteps):
img, x_start = self.p_sample(img, t, cond_emb = cond_emb, cond_scale= cond_scale)
img = unnormalize_to_zero_to_one(img)
return img
@torch.no_grad()
def sample(self, cond_emb, cond_scale = 5):
batch_size = cond_emb.shape[0]
image_size = self.image_size
channels = self.channels
return self.ddim_sample(cond_emb, (batch_size, channels, image_size, image_size),cond_scale)
@property
def loss_fn(self):
if self.loss_type == "l2":
return F.mse_loss
elif self.loss_type == "l1":
return F.l1_loss
else:
raise ValueError
@torch.no_grad()
def ddim_sample(self, cond_emb, shape, cond_scale = 5, clip_denoised = True):
batch = shape[0]
device = self.device
total_timesteps = 1000
sampling_timesteps = self.sampling_timesteps
eta = self.ddim_sampling_eta
times = torch.linspace(-1, total_timesteps - 1, steps = sampling_timesteps + 1)
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:]))
img = torch.randn(shape, device = device)
for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'):
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
pred_noise, x_start, *_ = self.model_predictions(img, time_cond, cond_emb, cond_scale = cond_scale, clip_x_start = clip_denoised, rederive_pred_noise = True)
if time_next < 0:
img = x_start
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(img)
img = x_start * alpha_next.sqrt() + c * pred_noise + sigma * noise
img = unnormalize_to_zero_to_one(img)
return img
def p_losses(self, x_start, t, cond_emb, noise = None):
b, c, h, w = x_start.shape
noise = default(noise, lambda: torch.randn_like(x_start))
x = self.q_sample(x_start = x_start, t = t, noise = noise)
model_out = self.model.forward(x, t, cond_emb = cond_emb)
if self.objective == 'pred_noise':
target = noise
elif self.objective == 'pred_x_start':
target = x_start
elif self.objective == 'pred_v':
target = self.predict_v(x_start, t, noise)
else:
raise ValueError()
losses = self.loss_fn(model_out, target, reduction = 'none')
losses = reduce(losses, 'b ... -> b (...)', 'mean')
losses = losses * extract(self.loss_weight, t, losses.shape)
return losses.mean()
def q_sample(self, x_start, t, noise = None):
noise = default(noise, lambda:torch.randn_like(x_start))
return (extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def forward(self, img, *args, **kwargs):
b, c, h, w, device, img_size = *img.shape, img.device, self.image_size
t = torch.randint(0, self.timesteps, (b,), device = device).long()
img = normalize_to_neg_one_to_one(img)
return self.p_losses(img, t, *args, **kwargs)