-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
325 additions
and
0 deletions.
There are no files selected for viewing
325 changes: 325 additions & 0 deletions
325
archive/phase_iv/final/helper_sum-confusion-matrices.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,325 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Helper: Sum Confusion Matrices\n", | ||
"Select an arbitrary set of rows in a scorecard, and sum the confusion matrices to generate a single \"total\" confusion matrix. This allows for direct calculation of statistics across the full set, rather than merely averaging statistics derived from the various individual entries. \n", | ||
"\n", | ||
"Date: 3 March 2020 \n", | ||
"Author: Peter Kerins " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Load and inspect scorecard data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"scorecard_path = \"C:/Users/Peter.Kerins/World Resources Institute/Urban Land Use - Documents/WRI Results/phase_iv/scorecards_analysis/single-sheet_composite_validation.csv\"\n", | ||
"df = pd.read_csv(scorecard_path,sep=',')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df.columns" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df.confusion" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Separate 3-category and 6-category entries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df6 = df[df.notes.str.contains('full') & df.notes.str.contains('2019')]\n", | ||
"df3 = df[df.notes.str#### Confusion matrix scoring method.contains('reduced') & df.notes.str.contains('2019')]\n", | ||
"print (len(df6), len(df3))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Define confusion matrix scoring method\n", | ||
"Copied from `util_scoring.py` for simplicity (this notebook can be executed with just the scorecard file, not needing any other project code; helpful when VM is not currently constituted)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# from util_scoring.py\n", | ||
"def calc_confusion_details(confusion):\n", | ||
" n_categories = confusion.shape[0]\n", | ||
" # out of samples in category, how many assigned to that category\n", | ||
" # (true positives) / (true positives + false negatives)\n", | ||
" # (correct) / (samples from category)\n", | ||
" recalls = np.zeros(n_categories, dtype='float32')\n", | ||
" # out of samples assigned to category, how many belong to that category\n", | ||
" # (true positives) / (true positives + false positives)\n", | ||
" # (correct) / (samples assigned to category)\n", | ||
" precisions = np.zeros(n_categories, dtype='float32')\n", | ||
"\n", | ||
" for j in range(n_categories):\n", | ||
" ascribed = np.sum(confusion[:,j])\n", | ||
" actual = np.sum(confusion[j,:])\n", | ||
" correct = confusion[j,j]\n", | ||
" if actual:\n", | ||
" recalls[j] = float(correct)/float(actual)\n", | ||
" else:\n", | ||
" recalls[j] = 1e8\n", | ||
" if ascribed:\n", | ||
" precisions[j] = float(correct)/float(ascribed)\n", | ||
" else:\n", | ||
" precisions[j] = 1e8\n", | ||
" # what percentage of total samples were assigned to the correct category\n", | ||
" accuracy = confusion.trace()/float(confusion.sum())\n", | ||
"\n", | ||
" return recalls, precisions, accuracy" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 6-category scoring" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df6.confusion" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"result = df6.confusion.apply(lambda x: \n", | ||
" np.fromstring(\n", | ||
" x.replace('\\n','')\n", | ||
" .replace('[','')\n", | ||
" .replace(']','')\n", | ||
" .replace(' ',' '), sep=' '))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"np_sum = (result.sum())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"confusion = np_sum.reshape((6,6)).astype('uint')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"confusion" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"recalls, precisions, accuracy = calc_confusion_details(confusion)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(recalls)\n", | ||
"print(precisions)\n", | ||
"print(accuracy)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Calculate f-score\n", | ||
"beta = 2\n", | ||
"f_scores = (beta**2 + 1) * precisions * recalls / ( (beta**2 * precisions) + recalls )\n", | ||
"f_score_average = np.mean(f_scores)\n", | ||
"print (f_scores)\n", | ||
"print (f_score_average)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 3-category scoring" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df3.confusion" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"result = df3.confusion.apply(lambda x: \n", | ||
" np.fromstring(\n", | ||
" x.replace('\\n','')\n", | ||
" .replace('[','')\n", | ||
" .replace(']','')\n", | ||
" .replace(' ',' '), sep=' '))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"np_sum = (result.sum())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"confusion = np_sum.reshape((3,3)).astype('uint')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"confusion" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"recalls, precisions, accuracy = calc_confusion_details(confusion)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(recalls)\n", | ||
"print(precisions)\n", | ||
"print(accuracy)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Calculate f-score\n", | ||
"beta = 2\n", | ||
"f_scores = (beta**2 + 1) * precisions * recalls / ( (beta**2 * precisions) + recalls )\n", | ||
"f_score_average = np.mean(f_scores)\n", | ||
"print (f_scores)\n", | ||
"print (f_score_average)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |