-
Notifications
You must be signed in to change notification settings - Fork 79
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
368 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,353 @@ | ||
from __future__ import annotations | ||
|
||
from typing import Annotated, Any, Callable | ||
|
||
from impunity import impunity | ||
from scipy import linalg | ||
|
||
import numpy as np | ||
import numpy.typing as npt | ||
import pandas as pd | ||
|
||
from . import FilterBase | ||
|
||
|
||
def extended_kalman_filter( | ||
measurements: pd.DataFrame, | ||
initial_state: pd.Series, | ||
initial_covariance: npt.NDArray[np.float64], | ||
Q: npt.NDArray[np.float64], | ||
R: npt.NDArray[np.float64], | ||
jacobian_state_transition: Callable[ | ||
[pd.Series, float], npt.NDArray[np.float64] | ||
], | ||
state_transition_function: Callable[[pd.Series, float], pd.Series], | ||
reject_sigma: float = 3, | ||
) -> pd.DataFrame: | ||
num_states = len(initial_state) | ||
states = np.repeat( | ||
initial_state.values.reshape(1, -1), measurements.shape[0], axis=0 | ||
) | ||
covariances = np.zeros((measurements.shape[0], num_states, num_states)) | ||
|
||
x = initial_state | ||
P = initial_covariance | ||
timestamps = measurements.index.to_series() | ||
|
||
for i in range(1, len(timestamps)): | ||
dt = (timestamps[i] - timestamps[i - 1]).total_seconds() | ||
|
||
# Prediction Step | ||
F = jacobian_state_transition(x, dt) | ||
# Predicted (a priori) state estimate: | ||
x = state_transition_function(x, dt) | ||
# Predicted (a priori) estimate covariance: | ||
P = F @ P @ F.T + Q | ||
|
||
# Measurement update with rejection mechanism | ||
measurement = measurements.iloc[i] | ||
H = np.eye(num_states) | ||
# Innovation or measurement pre-fit residual: | ||
nu = measurement - x | ||
# Innovation (or pre-fit residual) covariance: | ||
S = H @ P @ H.T + R | ||
std_devs = np.sqrt(np.diag(S)) | ||
|
||
# Component-wise standard deviation check (gating) | ||
for j in range(num_states): | ||
if abs(nu[j]) > abs(reject_sigma * std_devs[j]): | ||
measurement.iloc[j] = x.iloc[j] # Replace faulty measurement | ||
H[j, j] = 0 # Ignore this component in the update | ||
|
||
# Here we recompute the matrix in case something was rejected: | ||
# Innovation (or pre-fit residual) covariance: | ||
S = H @ P @ H.T + R | ||
# Optimal Kalman gain: | ||
K = linalg.solve(S, H @ P, assume_a="pos").T | ||
# Updated (a posteriori) state estimate: | ||
x = x + K @ nu | ||
# Updated (a posteriori) estimate covariance: | ||
P = (np.eye(num_states) - K @ H) @ P | ||
|
||
states[i] = x | ||
covariances[i] = P | ||
|
||
return pd.DataFrame(states, columns=measurements.columns), covariances | ||
|
||
|
||
def rts_smoother( | ||
states: pd.DataFrame, | ||
covariances: npt.NDArray[np.float64], | ||
Q: npt.NDArray[np.float64], | ||
timestamps: pd.Series, | ||
jacobian_state_transition: Callable[ | ||
[pd.Series, float], npt.NDArray[np.float64] | ||
], | ||
state_transition_function: Callable[[pd.Series, float], pd.Series], | ||
) -> pd.DataFrame: | ||
num_time_steps = states.shape[0] | ||
smoothed_states = states.copy() | ||
smoothed_covariances = covariances.copy() | ||
|
||
for i in range(num_time_steps - 2, -1, -1): | ||
dt = (timestamps[i + 1] - timestamps[i]).total_seconds() | ||
|
||
F = jacobian_state_transition(states.iloc[i], dt) | ||
|
||
# predicted state | ||
predicted_state = state_transition_function(states.iloc[i], dt) | ||
# predicted covariance | ||
Pp = F @ covariances[i] @ F.T + Q | ||
|
||
# G = linalg.solve(Pp, F @ covariances[i], assume_a="pos").T | ||
G = covariances[i] @ F.T @ np.linalg.inv(Pp) | ||
smoothed_states.iloc[i] = states.iloc[i] + G @ ( | ||
states.iloc[i + 1] - predicted_state | ||
) | ||
smoothed_covariances[i] = ( | ||
covariances[i] + G @ (covariances[i + 1] - Pp) @ G.T | ||
) | ||
|
||
return smoothed_states | ||
|
||
|
||
class ProcessXYZZFilterBase(FilterBase): | ||
@impunity | ||
def preprocess(self, df: pd.DataFrame) -> pd.DataFrame: | ||
groundspeed: Annotated[Any, "kts"] = df.groundspeed | ||
# the angle is wrapped between 0 and 2pi, we need to unwrap it | ||
math_angle: Annotated[Any, "radians"] = np.unwrap( | ||
np.radians(90 - df.track) | ||
) | ||
velocity: Annotated[Any, "m/s"] = groundspeed | ||
|
||
x: Annotated[Any, "m"] = df.x | ||
y: Annotated[Any, "m"] = df.y | ||
|
||
altitude: Annotated[Any, "ft"] = df.altitude | ||
# geoaltitude: Annotated[Any, "ft"] = df.geoaltitude | ||
alt_baro: Annotated[Any, "m"] = altitude | ||
# alt_geo: Annotated[Any, "m"] = geoaltitude | ||
|
||
vertical_rate: Annotated[Any, "ft/min"] = df.vertical_rate | ||
vert_rate: Annotated[Any, "m/s"] = vertical_rate | ||
|
||
return pd.DataFrame( | ||
{ | ||
"x": x, | ||
"y": y, | ||
"alt_baro": alt_baro, | ||
# "alt_geo": alt_geo, | ||
"math_angle": math_angle, | ||
"velocity": velocity, | ||
"vert_rate": vert_rate, | ||
} | ||
).set_index(df["timestamp"]) | ||
|
||
@impunity | ||
def postprocess( | ||
self, df: pd.DataFrame | ||
) -> dict[str, npt.NDArray[np.float64]]: | ||
x: Annotated[Any, "m"] = df.x | ||
y: Annotated[Any, "m"] = df.y | ||
alt_baro: Annotated[Any, "m"] = df.alt_baro | ||
# alt_geo: Annotated[Any, "m"] = df.alt_geo | ||
math_angle: Annotated[Any, "radians"] = df.math_angle | ||
velocity: Annotated[Any, "m/s"] = df.velocity | ||
vert_rate: Annotated[Any, "m/s"] = df.vert_rate | ||
|
||
altitude: Annotated[Any, "ft"] = alt_baro | ||
# geoaltitude: Annotated[Any, "ft"] = alt_geo | ||
track: Annotated[Any, "degree"] = (90 - np.degrees(math_angle)) % 360 | ||
groundspeed: Annotated[Any, "kts"] = velocity | ||
vertical_rate: Annotated[Any, "ft/min"] = vert_rate | ||
|
||
return dict( | ||
x=x, | ||
y=y, | ||
altitude=altitude, | ||
# geoaltitude=geoaltitude, | ||
track=track, | ||
groundspeed=groundspeed, | ||
vertical_rate=vertical_rate, | ||
) | ||
|
||
|
||
class EKF(ProcessXYZZFilterBase): | ||
@staticmethod | ||
def state_transition_function(state: pd.Series, dt: float) -> pd.Series: | ||
# Unpack the state vector | ||
# _x, _y, _alt_baro, _alt_geo, math_angle, velocity, vert_rate = state | ||
_x, _y, _alt_baro, math_angle, velocity, vert_rate = state | ||
|
||
# Compute the derivatives | ||
x_dot = velocity * np.cos(math_angle) | ||
y_dot = velocity * np.sin(math_angle) | ||
altitude_dot = vert_rate | ||
# geoaltitude_dot = vert_rate | ||
|
||
# Compute the predicted state | ||
state_pred = state.copy() | ||
state_pred.loc["x"] += x_dot * dt | ||
state_pred.loc["y"] += y_dot * dt | ||
state_pred.loc["alt_baro"] += altitude_dot * dt | ||
# state_pred.loc["alt_geo"] += geoaltitude_dot * dt | ||
# Other state variables (math_angle, velocity, vert_rate) are assumed | ||
# to be constant over the time step | ||
return state_pred | ||
|
||
@staticmethod | ||
def jacobian_state_transition( | ||
x: pd.Series, dt: float | ||
) -> npt.NDArray[np.float64]: | ||
# Unpack the state vector | ||
# _, _, _, _, math_angle, velocity, _ = x | ||
_, _, _, math_angle, velocity, _ = x | ||
|
||
# # Compute the Jacobian matrix | ||
# F_jacobian = np.eye(7) | ||
# # Partial derivative of x_dot w.r.t math_angle: | ||
# F_jacobian[0, 4] = -velocity * np.sin(math_angle) * dt | ||
# # Partial derivative of x_dot w.r.t velocity: | ||
# F_jacobian[0, 5] = np.cos(math_angle) * dt | ||
# # Partial derivative of y_dot w.r.t math_angle: | ||
# F_jacobian[1, 4] = velocity * np.cos(math_angle) * dt | ||
# # Partial derivative of y_dot w.r.t velocity: | ||
# F_jacobian[1, 5] = np.sin(math_angle) * dt | ||
# # Partial derivative of altitude_dot w.r.t vertical_rate | ||
# F_jacobian[2, 6] = dt | ||
# # Partial derivative of geoaltitude_dot w.r.t vertical_rate | ||
# F_jacobian[3, 6] = dt | ||
|
||
# Compute the Jacobian matrix | ||
F_jacobian = np.eye(6) | ||
# Partial derivative of x_dot w.r.t math_angle: | ||
F_jacobian[0, 3] = -velocity * np.sin(math_angle) * dt | ||
# Partial derivative of x_dot w.r.t velocity: | ||
F_jacobian[0, 4] = np.cos(math_angle) * dt | ||
# Partial derivative of y_dot w.r.t math_angle: | ||
F_jacobian[1, 3] = velocity * np.cos(math_angle) * dt | ||
# Partial derivative of y_dot w.r.t velocity: | ||
F_jacobian[1, 4] = np.sin(math_angle) * dt | ||
# Partial derivative of altitude_dot w.r.t vertical_rate | ||
F_jacobian[2, 5] = dt | ||
# Partial derivative of geoaltitude_dot w.r.t vertical_rate | ||
# F_jacobian[3, 6] = dt | ||
|
||
return F_jacobian | ||
|
||
def __init__(self, smooth: bool = True, reject_sigma: int = 3) -> None: | ||
super().__init__() | ||
self.reject_sigma = reject_sigma | ||
self.smooth = smooth | ||
|
||
def apply(self, data: pd.DataFrame) -> pd.DataFrame: | ||
measurements = self.preprocess(data) | ||
|
||
# initial state | ||
x0 = measurements.iloc[0] # Initial state | ||
# P = np.eye(7) # Initial covariance | ||
P = np.eye(6) # Initial covariance | ||
|
||
std_dev_gps = 0 | ||
std_dev_baro = 0 | ||
window_size = 17 | ||
std_dev_track = 0 | ||
std_dev_gps_speed = 0 | ||
std_dev_baro_speed = 0 | ||
R = ( | ||
np.diag( | ||
[ | ||
( | ||
( | ||
measurements.x | ||
- measurements.x.rolling(window_size).mean() | ||
).std() | ||
** 2 | ||
+ std_dev_gps**2 | ||
) | ||
** 0.5, | ||
( | ||
( | ||
measurements.y | ||
- measurements.y.rolling(window_size).mean() | ||
).std() | ||
** 2 | ||
+ std_dev_gps**2 | ||
) | ||
** 0.5, | ||
( | ||
( | ||
measurements.alt_baro | ||
- measurements.alt_baro.rolling(window_size).mean() | ||
).std() | ||
** 2 | ||
+ std_dev_baro**2 | ||
) | ||
** 0.5, | ||
# ( | ||
# ( | ||
# measurements.alt_geo | ||
# - measurements.alt_geo.rolling(window_size).mean() | ||
# ).std() | ||
# ** 2 | ||
# + std_dev_gps**2 | ||
# ) | ||
# ** 0.5, | ||
( | ||
( | ||
measurements.math_angle | ||
- measurements.math_angle.rolling( | ||
window_size | ||
).mean() | ||
).std() | ||
** 2 | ||
+ std_dev_track**2 | ||
) | ||
** 0.5, | ||
( | ||
( | ||
measurements.velocity | ||
- measurements.velocity.rolling(window_size).mean() | ||
).std() | ||
** 2 | ||
+ std_dev_gps_speed**2 # | ||
) | ||
** 0.5, | ||
( | ||
( | ||
measurements.vert_rate | ||
- measurements.vert_rate.rolling(window_size).mean() | ||
).std() | ||
** 2 | ||
+ std_dev_baro_speed**2 | ||
) | ||
** 0.5, | ||
] | ||
) | ||
** 2 | ||
) | ||
|
||
# Q = np.diag([0.1, 0.1, 0.01, 0.01, 0.3, 1, 0.5]) * R | ||
Q = np.diag([0.1, 0.1, 0.01, 0.3, 1, 0.5]) * R | ||
filtered_states, filtered_covariances = extended_kalman_filter( | ||
measurements=measurements, | ||
initial_state=x0, | ||
initial_covariance=P, | ||
Q=Q, | ||
R=R, # type: ignore | ||
jacobian_state_transition=EKF.jacobian_state_transition, | ||
state_transition_function=EKF.state_transition_function, | ||
reject_sigma=self.reject_sigma, | ||
) | ||
if self.smooth: | ||
filtered_states = rts_smoother( | ||
filtered_states, | ||
filtered_covariances, | ||
Q, | ||
measurements.index, | ||
EKF.jacobian_state_transition, | ||
EKF.state_transition_function, | ||
) | ||
|
||
return data.assign(**self.postprocess(filtered_states)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters