-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
232 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
import splitfolders | ||
splitfolders.ratio("/ocean/projects/mch210006p/shared/HW1/Classification", output="/ocean/projects/mch210006p/xs018/HW1/Classification", seed=1337, ratio=(.8, .1, .1), group_prefix=None) # default values |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import pandas as pd | ||
import numpy as np | ||
from scipy.stats import zscore | ||
from sklearn.model_selection import train_test_split | ||
from tensorflow.keras.models import Sequential | ||
from tensorflow.keras.layers import Dense | ||
from tensorflow.keras.callbacks import EarlyStopping | ||
from sklearn import metrics | ||
import matplotlib.pyplot as plt | ||
import tensorflow as tf | ||
import time | ||
|
||
tf.random.set_seed(1234) | ||
def create_mlp(dim, regress=False): | ||
model = Sequential() | ||
model.add(Dense(256, input_dim=dim, activation="relu")) | ||
model.add(Dense(512, activation="relu")) | ||
model.add(Dense(128, activation="relu")) | ||
model.add(Dense(64, activation="relu")) | ||
if regress: | ||
model.add(Dense(1, activation="linear")) | ||
return model | ||
|
||
def main(): | ||
file_path = '/ocean/projects/mch210006p/shared/HW1/Regression/boiling-32_temp_heat_flux.txt' | ||
data = pd.read_csv(file_path, delimiter = "\t", names=['Temperature(C)', 'Heat flux(W/cm2)'], header=0) | ||
x = zscore(data['Temperature(C)']) | ||
y = data['Heat flux(W/cm2)'].values | ||
start=time.time() | ||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) | ||
model = create_mlp(1, True) | ||
print(model.summary()) | ||
# rmse = tf.keras.metrics.RootMeanSquaredError() | ||
model.compile(loss='mean_squared_error', optimizer='adam') | ||
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3, | ||
patience=5, verbose=1, mode='auto', restore_best_weights=True) | ||
history = model.fit(x_train,y_train, validation_data=(x_test,y_test), callbacks=[monitor], verbose=2, epochs=100) | ||
end=time.time() | ||
print(f"Eclapse time: {end-start}s") | ||
|
||
# print(history.history) | ||
plt.figure() | ||
plt.plot(history.history['loss'], label='training_loss') | ||
plt.plot(history.history['val_loss'], label='val_loss') | ||
plt.xlabel('epoches') | ||
plt.ylabel('loss') | ||
plt.savefig('res/hw1_1_1mse.png') | ||
# plt.figure() | ||
# plt.plot(history.history['rmse'], label='training accuracy') | ||
# plt.plot(history.history['val_rmse'], label='val_accuracy') | ||
# plt.savefig('res/hw1_1_rmse.png') | ||
|
||
# Predict | ||
pred = model.predict(x_test) | ||
|
||
# Measure MSE error. | ||
score_mse = metrics.mean_squared_error(pred, y_test) | ||
|
||
# Measure RMSE error. RMSE is common for regression. | ||
score_rmse = np.sqrt(score_mse) | ||
|
||
print(f"Mean Square Error: {score_mse}") | ||
print(f"Rooted Mean Square Error: {score_rmse}") | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
#!/bin/bash | ||
######## --send email ######## | ||
#SBATCH --mail-type=begin | ||
#SBATCH --mail-type=end | ||
#SBATCH --mail-user=xs018@uark.edu | ||
|
||
######## Job Name: Train_Job ######## | ||
#SBATCH -J HW1_Job | ||
#SBATCH -o log/HW1_Job.o%j | ||
#SBATCH -e log/HW1_Job.e%j | ||
|
||
#SBATCH -p GPU-shared | ||
#SBATCH -N 1 | ||
#SBATCH --export=ALL | ||
#SBATCH --gres=gpu:1 | ||
#SBATCH -t 00:10:00 | ||
|
||
module load AI/anaconda3-tf2.2020.11 | ||
conda activate /jet/home/xs018/envs | ||
cd /jet/home/xs018/code | ||
|
||
python hw1_1_1.py |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import pandas as pd | ||
import numpy as np | ||
from scipy.stats import zscore | ||
from sklearn.model_selection import train_test_split | ||
from tensorflow.keras.models import Sequential | ||
from tensorflow.keras.layers import Dense | ||
from tensorflow.keras.callbacks import EarlyStopping | ||
from sklearn import metrics | ||
import matplotlib.pyplot as plt | ||
from sklearn.model_selection import KFold | ||
from keras import losses | ||
import statistics | ||
import time | ||
import tensorflow as tf | ||
|
||
tf.random.set_seed(1234) | ||
def create_mlp(dim, regress=False): | ||
model = Sequential() | ||
model.add(Dense(256, input_dim=dim, activation="relu")) | ||
model.add(Dense(512, activation="relu")) | ||
model.add(Dense(128, activation="relu")) | ||
model.add(Dense(64, activation="relu")) | ||
if regress: | ||
model.add(Dense(1, activation="linear")) | ||
return model | ||
|
||
def main(): | ||
file_path = '/ocean/projects/mch210006p/shared/HW1/Regression/boiling-32_temp_heat_flux.txt' | ||
data = pd.read_csv(file_path, delimiter = "\t", names=['Temperature(C)', 'Heat flux(W/cm2)'], header=0) | ||
x = zscore(data['Temperature(C)']) | ||
y = data['Heat flux(W/cm2)'].values | ||
# x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) | ||
start=time.time() | ||
model = create_mlp(1, True) | ||
print(model.summary()) | ||
model.compile(loss='mean_squared_error', optimizer='adam') | ||
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3, | ||
patience=5, verbose=1, mode='auto', restore_best_weights=True) | ||
|
||
best_loss = np.Infinity | ||
best_losses_train = None | ||
best_losses_validation = None | ||
kf = KFold(100, shuffle=True, random_state=42) | ||
fold=0 | ||
for train, test in kf.split(x): | ||
x_train = x[train] | ||
y_train = y[train] | ||
x_test = x[test] | ||
y_test = y[test] | ||
fold+=1 | ||
print(f"Fold #{fold}") | ||
# print(history.history) | ||
history = model.fit(x_train,y_train, validation_data=(x_test,y_test), callbacks=[monitor], verbose=2, epochs=100) | ||
if statistics.mean(history.history['val_loss']) < best_loss: | ||
best_loss = statistics.mean(history.history['val_loss']) | ||
best_losses_train = history.history['loss'] | ||
best_losses_validation = history.history['val_loss'] | ||
end=time.time() | ||
print(f"Eclapse time: {end-start}s") | ||
plt.figure() | ||
plt.plot(best_losses_train, label='training_loss') | ||
plt.plot(best_losses_validation, label='val_loss') | ||
plt.savefig('res/hw1_1_2mse.png') | ||
# plt.figure() | ||
# plt.plot(history.history['rmse'], label='training accuracy') | ||
# plt.plot(history.history['val_rmse'], label='val_accuracy') | ||
# plt.savefig('res/hw1_1_rmse.png') | ||
# Predict | ||
pred = model.predict(x_test) | ||
|
||
# Measure MSE error. | ||
score_mse = metrics.mean_squared_error(pred, y_test) | ||
|
||
# Measure RMSE error. RMSE is common for regression. | ||
score_rmse = np.sqrt(score_mse) | ||
|
||
print(f"Mean Square Error: {score_mse}") | ||
print(f"Rooted Mean Square Error: {score_rmse}") | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
#!/bin/bash | ||
######## --send email ######## | ||
#SBATCH --mail-type=begin | ||
#SBATCH --mail-type=end | ||
#SBATCH --mail-user=xs018@uark.edu | ||
|
||
######## Job Name: Train_Job ######## | ||
#SBATCH -J HW1_Job | ||
#SBATCH -o log/HW1_Job.o%j | ||
#SBATCH -e log/HW1_Job.e%j | ||
|
||
#SBATCH -p GPU-shared | ||
#SBATCH -N 1 | ||
#SBATCH --export=ALL | ||
#SBATCH --gres=gpu:1 | ||
#SBATCH -t 02:00:00 | ||
|
||
module load AI/anaconda3-tf2.2020.11 | ||
conda activate /jet/home/xs018/envs | ||
cd /jet/home/xs018/code | ||
|
||
python hw1_2.py |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
|
||
from sklearn.metrics import confusion_matrix, auc, roc_curve, precision_recall_curve | ||
from sklearn.metrics import ConfusionMatrixDisplay, RocCurveDisplay, PrecisionRecallDisplay | ||
|
||
res = pd.read_csv('result.csv').values | ||
y_true = res[:, 1] | ||
y_pred = res[:, 0] | ||
y_prob = res[:, 2] | ||
|
||
cm = confusion_matrix(y_true, y_pred, labels=[0, 1]) | ||
|
||
tn, fp, fn, tp = cm.ravel() # where 1 is positive, 0 is negative | ||
print(f"True Negative: {tn}, False Positive: {fp}, False Negative: {fn}, True Postive: {tp}") | ||
|
||
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['post-CHF(0)', 'pre-CHF(1)']) | ||
disp.plot() | ||
plt.savefig('res/hw1_2confusion_matrix.png') | ||
|
||
fpr, tpr, thresholds = roc_curve(y_true, y_prob) | ||
roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot() | ||
plt.savefig('res/hw1_2ROC.png') | ||
|
||
prec, recall, _ = precision_recall_curve(y_true, y_prob) | ||
pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot() | ||
plt.savefig('res/hw1_2confusion_prediction.png') | ||
|
||
print(f"Area Under Curve: {auc(fpr, tpr)}") | ||
print(f"Accuracy: {(tp+tn) / (tn + fp + fn+ tp)}") | ||
print(f"Precision: {(tp) / ( fp + tp)}") | ||
print(f"Recall: {(tp) / ( fn + tp)}") | ||
print(f"F1 Score: {tp / (tp + (fn + fp)/2)}") | ||
|