-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
24,051 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import os | ||
import random | ||
from glob import glob | ||
from skimage.io import imread, imsave | ||
from skimage.transform import resize | ||
import matplotlib.pyplot as plt | ||
|
||
from sklearn.preprocessing import StandardScaler | ||
from sklearn.decomposition import PCA | ||
from sklearn.cluster import KMeans | ||
|
||
np.random.seed(0) | ||
|
||
# data_path_base = "/ocean/projects/mch210006p/shared/HW1/Classification" | ||
# post_path = os.path.join(data_path_base, "post-CHF") | ||
# pre_path = os.path.join(data_path_base, "pre-CHF") | ||
# post_dirs = glob(f"{post_path}/*.jpg") | ||
# pre_dirs = glob(f"{pre_path}/*.jpg") | ||
|
||
# dataset = [] | ||
|
||
# for dir in post_dirs: | ||
# dataset.append([dir, 1]) | ||
|
||
# for dir in pre_dirs: | ||
# dataset.append([dir, 0]) | ||
|
||
# dataset = np.asarray(dataset) | ||
# print(dataset.shape) | ||
# df = pd.DataFrame(dataset) | ||
# df.to_csv("dataset.csv", index=False, header=["path", "label"]) | ||
|
||
n_samples = 23890 | ||
# print(len(dataset)) | ||
|
||
image_size = (240, 240) | ||
dataset = pd.read_csv("dataset.csv") | ||
idx = np.random.choice(len(dataset), n_samples) | ||
selected = dataset.iloc[idx] | ||
data = np.empty((n_samples, image_size[0]*image_size[1])) | ||
for i in range(n_samples): | ||
path = selected.iloc[i, 0] | ||
img = np.float32(imread(path)) / 255. | ||
image_resized = resize(img, image_size, anti_aliasing=True) | ||
data[i] = image_resized.flatten() | ||
print(data.shape) | ||
|
||
split_ratio = 0.2 | ||
test_num = int(n_samples*split_ratio) | ||
train_num = n_samples - test_num | ||
x_train = data[:train_num, :] | ||
x_test = data[train_num:, :] | ||
|
||
|
||
def fit_pca(n_components): | ||
# sc = StandardScaler() | ||
# sc.fit(data) | ||
# data_std = sc.transform(data) | ||
|
||
# Instantiate PCA | ||
pca = PCA(n_components=n_components) | ||
|
||
# Determine transformed features | ||
train_pcs = pca.fit_transform(x_train) | ||
|
||
###################################### prob 1 ###################################### | ||
# Determine explained variance using explained_variance_ration_ attribute | ||
exp_var_pca = pca.explained_variance_ratio_ | ||
# Cumulative sum of eigenvalues; This will be used to create step plot | ||
# for visualizing the variance explained by each principal component. | ||
cum_sum_eigenvalues = np.cumsum(exp_var_pca) | ||
|
||
# Create the visualization plot | ||
plt.figure() | ||
plt.bar(range(0,len(exp_var_pca)), exp_var_pca, alpha=0.5, align='center', label='Individual explained variance') | ||
plt.step(range(0,len(cum_sum_eigenvalues)), cum_sum_eigenvalues, where='mid',label='Cumulative explained variance') | ||
plt.ylabel('Explained variance ratio') | ||
plt.xlabel('Principal component index') | ||
plt.legend(loc='best') | ||
plt.tight_layout() | ||
plt.savefig(f"res/hw3/1_{n_components}_train{train_num}_val{test_num}.jpg") | ||
|
||
###################################### prob 2 ###################################### | ||
sample = x_test[1].reshape(1, -1) | ||
sample_pcs = pca.transform(sample) | ||
projected_sample = pca.inverse_transform(sample_pcs) | ||
|
||
plt.figure() | ||
plt.subplot(1, 2, 1) | ||
plt.imshow(sample.reshape(image_size), cmap="gray") | ||
plt.title("Original") | ||
plt.axis('off') | ||
plt.subplot(1, 2, 2) | ||
plt.imshow(projected_sample.reshape(image_size), cmap="gray") | ||
plt.title("Reconstructed") | ||
plt.axis('off') | ||
plt.savefig(f"res/hw3/2_{n_components}_train{train_num}_val{test_num}.jpg") | ||
|
||
###################################### prob 3 ###################################### | ||
test_pcs = pca.transform(x_test) | ||
projected_test = pca.inverse_transform(test_pcs) | ||
err = ((projected_test - x_test) ** 2).mean() | ||
|
||
reconstruction_err.append(err) | ||
|
||
###################################### prob 4 ###################################### | ||
n_clusters = 2 | ||
k_means = KMeans(n_clusters=n_clusters, random_state=0) | ||
k_means.fit(train_pcs) | ||
centroids = k_means.cluster_centers_ | ||
label = k_means.labels_ | ||
|
||
if n_components > 1: | ||
plt.figure() | ||
for i in range(n_clusters): | ||
plt.scatter(train_pcs[label == i, 0], train_pcs[label == i, 1], edgecolor='none', c=np.random.rand(1, 3), | ||
label=f"Cluster {i + 1}") | ||
|
||
plt.scatter(centroids[:, 0], centroids[:, 1], marker="*", s=100, c="r", label="Cluster Centroid") | ||
plt.legend() | ||
plt.xlabel('Principal Component 1') | ||
plt.ylabel('Principal Component 2') | ||
plt.title(f"K-Means Clustering Results with K={n_clusters}") | ||
plt.savefig(f"res/hw3/4_{n_components}_train{train_num}_val{test_num}.jpg") | ||
|
||
n_pcomponents = [1, 2, 10, 20, 50, 100] | ||
|
||
reconstruction_err = [] | ||
for components in n_pcomponents: | ||
fit_pca(components) | ||
|
||
plt.figure() | ||
plt.plot(n_pcomponents, reconstruction_err) | ||
plt.savefig(f"res/hw3/3_train{train_num}_val{test_num}.jpg") | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
#!/bin/bash | ||
######## --send email ######## | ||
#SBATCH --mail-type=begin | ||
#SBATCH --mail-type=end | ||
#SBATCH --mail-user=xs018@uark.edu | ||
|
||
######## Job Name: Train_Job ######## | ||
#SBATCH -J HW3_Job | ||
#SBATCH -o log/HW3_Job.o%j | ||
#SBATCH -e log/HW3_Job.e%j | ||
|
||
#SBATCH -p GPU-shared | ||
#SBATCH -N 1 | ||
#SBATCH --export=ALL | ||
#SBATCH --gres=gpu:1 | ||
#SBATCH -t 02:00:00 | ||
|
||
module load AI/anaconda3-tf2.2020.11 | ||
conda activate /jet/home/xs018/envs | ||
cd /jet/home/xs018/code | ||
|
||
python hw3.py |
Oops, something went wrong.