-
Notifications
You must be signed in to change notification settings - Fork 25
/
test.py
233 lines (204 loc) · 8.13 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
# @Author : xuelun
import cv2
import math
import uuid
import pytorch_lightning as pl
from pathlib import Path
from os.path import join, exists
from argparse import ArgumentParser
from yacs.config import CfgNode as CN
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.loggers import TensorBoardLogger
import tools as com
from trainer import Trainer
from networks.loftr.configs.outdoor import trainer_cfg, network_cfg
from networks.loftr.config import get_cfg_defaults as get_network_cfg
from trainer.config import get_cfg_defaults as get_trainer_cfg
from trainer.debug import get_cfg_defaults as get_debug_cfg
from datasets.data import MultiSceneDataModule
from datasets import gl3d
from datasets import gtasfm
from datasets import multifov
from datasets import blendedmvs
from datasets import iclnuim
from datasets import scenenet
from datasets import eth3d
from datasets import kitti
from datasets import robotcar
Benchmarks = dict(
GL3D = gl3d.cfg,
GTASfM = gtasfm.cfg,
MultiFoV = multifov.cfg,
BlendedMVS = blendedmvs.cfg,
ICLNUIM = iclnuim.cfg,
SceneNet = scenenet.cfg,
ETH3DO = eth3d.cfgO,
ETH3DI = eth3d.cfgI,
KITTI = kitti.cfg,
RobotcarNight = robotcar.night,
RobotcarSeason = robotcar.season,
RobotcarWeather = robotcar.weather,
)
RANSACs = dict(
RANSAC = cv2.RANSAC,
FAST = cv2.USAC_FAST,
MAGSAC = cv2.USAC_MAGSAC,
PROSAC = cv2.USAC_PROSAC,
DEFAULT = cv2.USAC_DEFAULT,
ACCURATE = cv2.USAC_ACCURATE,
PARALLEL = cv2.USAC_PARALLEL,
)
MODEL_ZOO = ['gim_dkm', 'gim_loftr', 'gim_lightglue', 'root_sift']
if __name__ == '__main__':
# ------------
# Hyperparameters
# ------------
parser = ArgumentParser()
# Project args
parser.add_argument('--trains', type=str, choices=set(Benchmarks), nargs='+',
default=[],
help=f'Train Datasets: {set(Benchmarks)}', )
parser.add_argument('--valids', type=str, choices=set(Benchmarks), nargs='+',
default=[],
help=f'Valid Datasets: {set(Benchmarks)}', )
parser.add_argument('--tests', type=str, choices=set(Benchmarks),
default=None,
help=f'Test Datasets: {set(Benchmarks)}', )
parser.add_argument('--debug', action='store_true',
help='For debug mode')
# Loader args
parser.add_argument('--batch_size', type=int, default=12,
help='input batch size for training and validation (default=2)')
parser.add_argument('--threads', type=int, default=3,
help='Number of threads (default: 3)')
# Traner args
parser.add_argument('--gpus', type=int, default=1,
help='GPU numbers')
parser.add_argument('--num_nodes', type=int, default=1,
help='Cluster node numbers')
parser.add_argument('--max_epochs', type=int, default=30,
help='Traning epochs (default: 30)')
parser.add_argument("--git", type=str, default='xxxxxx',
help=f'Git ID',)
parser.add_argument("--weight", type=str, default=None, choices=MODEL_ZOO,
required=True,
help=f'Pretrained model weight',)
# Hyper-parameters
parser.add_argument('--img_size', type=int, default=9999,
help='Image Size')
parser.add_argument('--lr', type=float, default=8e-3,
help='Learning rate')
# Runtime args
parser.add_argument('--test', action='store_true',
help="Tesing")
parser.add_argument('--viz', action='store_true',
help="Tesing")
parser.add_argument("--max_samples", type=int, default=None,
help=f'Max Samples in Testing',)
parser.add_argument("--min_score", type=float, default=0.0,
help='Min Score in Testing',)
parser.add_argument("--max_score", type=float, default=1.0,
help='Max Score in Testing',)
parser.add_argument("--ransac_threshold", type=float, default=0.5,
help='RANSAC Threshold',)
parser.add_argument('--ransac', type=str, choices=set(RANSACs), default='MAGSAC',
help=f'RANSAC Methods: {set(RANSACs)}', )
parser.add_argument("--version", type=str, default='AUC',
help=f'Model version',)
args = parser.parse_args()
# ------------
# Project config
# ------------
pcfg = CN(vars(args))
tcfg = get_trainer_cfg()
ncfg = get_network_cfg()
dcfg = CN({x:Benchmarks.get(x, None) for x in set(args.trains + args.valids + [args.tests])})
tcfg.merge_from_other_cfg(trainer_cfg)
if args.debug: tcfg.merge_from_other_cfg(get_debug_cfg())
ncfg.merge_from_other_cfg(network_cfg)
dcfg.DF = ncfg.LOFTR.RESOLUTION[0]
# load weight
ncfg.LOFTR.WEIGHT = join('weights', args.weight + '_' + args.version + '.ckpt')
if args.weight == 'root_sift':
ncfg.LOFTR.WEIGHT = None
# ------------
# Testing setting
# ------------
if args.max_samples is not None and args.test: dcfg[args.tests]['DATASET']['TESTS']['MAX_SAMPLES'] = args.max_samples
if args.min_score is not None and args.test: dcfg[args.tests]['DATASET']['TESTS']['MIN_OVERLAP_SCORE'] = args.min_score
if args.max_score is not None and args.test: dcfg[args.tests]['DATASET']['TESTS']['MAX_OVERLAP_SCORE'] = args.max_score
# print(dcfg)
# ------------
# Update Trainer Config
# ------------
TRAINER = tcfg.TRAINER
TRAINER.TRUE_BATCH_SIZE = args.gpus * args.batch_size
TRAINER.SCALING = _scaling = TRAINER.TRUE_BATCH_SIZE / TRAINER.CANONICAL_BS
TRAINER.CANONICAL_LR = args.lr
TRAINER.TRUE_LR = TRAINER.CANONICAL_LR * _scaling
TRAINER.WARMUP_STEP = math.floor(TRAINER.WARMUP_STEP / _scaling)
TRAINER.RANSAC_PIXEL_THR = args.ransac_threshold
TRAINER.POSE_ESTIMATION_METHOD = RANSACs[args.ransac]
# ------------
# W&B logger
# ------------
# com.login(args.server)
wid = str(uuid.uuid1()).split('-')[0]
com.hint('ID = {}'.format(wid))
logger = TensorBoardLogger('tensorboard', name='test', version='test')
# ------------
# reproducible
# ------------
pl.seed_everything(TRAINER.SEED, workers=True)
# ------------
# data loader
# ------------
dm = MultiSceneDataModule(args, dcfg)
# ------------
# model
# ------------
trainer = Trainer(pcfg, tcfg, dcfg, ncfg)
# ------------
# training
# ------------
fitter = pl.Trainer.from_argparse_args(
args,
# ddp
sync_batchnorm=True,
strategy=DDPPlugin(find_unused_parameters=False),
# reproducible
benchmark=True,
deterministic=False,
# logger
enable_checkpointing=False,
logger=logger,
log_every_n_steps=TRAINER.LOG_INTERVAL,
# prepare
weights_summary='top',
val_check_interval=TRAINER.VAL_CHECK_INTERVAL,
num_sanity_val_steps=TRAINER.NUM_SANITY_VAL_STEPS,
limit_train_batches=TRAINER.LIMIT_TRAIN_BATCHES,
limit_val_batches=TRAINER.LIMIT_VALID_BATCHES,
# faster training
# amp_level=TRAINER.AMP_LEVEL,
# amp_backend=TRAINER.AMP_BACKEND,
# precision=TRAINER.PRECISION, #https://github.com/PyTorchLightning/pytorch-lightning/issues/5558
# better fine-tune
gradient_clip_val=TRAINER.GRADIENT_CLIP_VAL,
gradient_clip_algorithm=TRAINER.GRADIENT_CLIP_ALGORITHM,
)
# ------------
# Fitting
# ------------
if args.test:
scene = Path(dcfg[pcfg["tests"]]['DATASET']['TESTS']['LIST_PATH']).stem.split('_')[0]
path = f"dump/zeb/[T] {pcfg.weight} {scene:>15} {pcfg.version}.txt"
if exists(path):
print(f"{path} already exists")
exit(0)
elif not exists(str(Path(path).parent)):
Path(path).parent.mkdir(parents=True)
fitter.test(trainer, datamodule=dm)
else:
fitter.fit(trainer, datamodule=dm)