Skip to content

yakhyo/fast-neural-style-transfer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast-Neural-Style 🚀

Downloads GitHub Repo stars GitHub Repository

The model uses the method described in Perceptual Losses for Real-Time Style Transfer and Super-Resolution along with Instance Normalization.

Table of Contents

Project Description

Style Images

Content Image

Output Images

Installation

git clone https://github.com/yakhyo/fast-neural-style-transfer.git
cd fast-neural-style-transfer

Create a new environment

conda create --name style_transfer python=3.10
conda activate style_transfer

Install dependencies

pip install -r requirements.txt

Note: ONNX model weights are provided inside weights folder. To download PyTorch model weights please check Release.

Style transfer model deployed using Flask, please see deploy folder for further.

Usage

Model trained using MSCOCO 2017 Training dataset.

Dataset folder structure

train2017-|
          |-images-|0001.jpg
                   |0002.jpg
                   |xxxx.jpg

Training script

python train.py --dataset path/to/dataset(e.g dataset/train2017) --style-image path/to/style/image --save-model 
path/to/save/model --epochs 5

Usage of train.py

usage: train.py [-h] --dataset DATASET [--style-image STYLE_IMAGE] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--image-size IMAGE_SIZE] [--style-size STYLE_SIZE] --save-model SAVE_MODEL [--content-weight CONTENT_WEIGHT]
                [--style-weight STYLE_WEIGHT] [--lr LR] [--log-interval LOG_INTERVAL]

Training parser for fast-neural-style

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to training dataset
  --style-image STYLE_IMAGE
                        path to style-image
  --epochs EPOCHS       number of training epochs
  --batch-size BATCH_SIZE
                        batch size for training
  --image-size IMAGE_SIZE
                        size of training images
  --style-size STYLE_SIZE
                        size of style-image, default is the original size of style image
  --save-model SAVE_MODEL
                        folder to save model weights
  --content-weight CONTENT_WEIGHT
                        weight for content-loss
  --style-weight STYLE_WEIGHT
                        weight for style-loss
  --lr LR               learning rate
  --log-interval LOG_INTERVAL
                        number of images after which the training loss is logged

Usage of stylize.py

usage: stylize.py [-h] --content-image CONTENT_IMAGE [--content-scale CONTENT_SCALE] --output-image OUTPUT_IMAGE --model MODEL [--export-onnx EXPORT_ONNX]
Training parser for fast-neural-style

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to training dataset
  --style-image STYLE_IMAGE
                        path to style-image
  --epochs EPOCHS       number of training epochs
  --batch-size BATCH_SIZE
                        batch size for training
  --image-size IMAGE_SIZE
  --content-scale CONTENT_SCALE
                        factor for scaling down the content image
  --output-image OUTPUT_IMAGE
                        path for saving the output image
  --model MODEL         saved model to be used for stylizing the image
  --export-onnx EXPORT_ONNX
                        export ONNX model to a given file

Export PyTorch model to ONNX format

python stylize.py --model path/to/pytorch/model --content-image path/to/image --export-onnx path/to/save/onnx/model

Inference using PyTorch model

python stylize.py --model path/to/pytorch/model --content-image path/to/image --output-image path/to/save/result/image

Inference using ONNX model

python stylize.py --model path/to/onnx/model --content-image path/to/image --output-image path/to/save/result/image

Model deployment using Flask

cd deploy
python app.py

Usage of app.py

usage: app.py [-h] [--port PORT] [--model MODEL]

Deployment Arguments

optional arguments:
  -h, --help     show this help message and exit
  --port PORT    Port number to run the server on
  --model MODEL  Model name 'candy', 'mosaic', 'rain-princess', 'udnie'

Contributing

If you find any issues within this code, feel free to create PR or issue.

License

The project is licensed under the MIT license.