🎉Qiskit Hackathon Korea 2021 : Community Choice Award Winner🎉
name | github | role |
---|---|---|
Kifumi Numata | @kifumi | Coach, Qiskit Advocate |
Anna Phan | @attp | Coach, Qiskit Advocate |
Dohun Kim | @yh08037 | Code development - model1/model2 |
Yunseo Kim | @Yunseo47 | Code development - model2, Presentation |
Jaehoon Hahm | @Jaehoon-zx | Create presentation slides, Presentation |
DaeHeon Yoon | @Greathoney | Code development - model1, Create presentation slides |
Yoon Kwon | @vhapfks | Create presentation slides |
Eunchan Lee | @purang2 | Code development - model1 |
Build MNIST multi-label classifiers using classical convolution layers and quantum fully-connected layers.
Model 2. CNN with Quantum Convolution Layer
Build MNIST multi-label classifiers using quantum convolution layers and classical fully-connected layers.
- Hybrid quantum-classical Neural Networks with PyTorch and Qiskit (Qiskit textbook)
- Gradients of parameterized quantum gates using the parameter-shift rule and gatedecomposition (arxiv)