forked from Project-MONAI/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add more unit tests (Project-MONAI#483)
Fixes # . ### Description This PR is used to add unit tests on the following bundles: - [x] endoscopic_tool_segmentation - [x] pathology_nuclei_segmentation_classification - [x] wholeBody_ct_segmentation - [x] pathology_nuclei_classification - [x] pathology_nuclick_annotation - [x] lung_nodule_ct_detection ### Status **Ready/Work in progress/Hold** ### Please ensure all the checkboxes: <!--- Put an `x` in all the boxes that apply, and remove the not applicable items --> - [x] Codeformat tests passed locally by running `./runtests.sh --codeformat`. - [ ] In-line docstrings updated. - [ ] Update `version` and `changelog` in `metadata.json` if changing an existing bundle. - [ ] Please ensure the naming rules in config files meet our requirements (please refer to: `CONTRIBUTING.md`). - [ ] Ensure versions of packages such as `monai`, `pytorch` and `numpy` are correct in `metadata.json`. - [ ] Descriptions should be consistent with the content, such as `eval_metrics` of the provided weights and TorchScript modules. - [ ] Files larger than 25MB are excluded and replaced by providing download links in `large_file.yml`. - [ ] Avoid using path that contains personal information within config files (such as use `/home/your_name/` for `"bundle_root"`). --------- Signed-off-by: KumoLiu <yunl@nvidia.com> Signed-off-by: Yiheng Wang <vennw@nvidia.com> Co-authored-by: Yiheng Wang <vennw@nvidia.com> Co-authored-by: Yiheng Wang <68361391+yiheng-wang-nv@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
0f70ac3
commit 0420991
Showing
14 changed files
with
1,340 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import shutil | ||
import tempfile | ||
import unittest | ||
|
||
import numpy as np | ||
from monai.bundle import ConfigWorkflow | ||
from monai.data import PILWriter | ||
from parameterized import parameterized | ||
from utils import check_workflow | ||
|
||
TEST_CASE_1 = [ # train, evaluate | ||
{ | ||
"bundle_root": "models/endoscopic_tool_segmentation", | ||
"train#trainer#max_epochs": 2, | ||
"train#dataloader#num_workers": 1, | ||
"validate#dataloader#num_workers": 1, | ||
"train#deterministic_transforms#3#spatial_size": [32, 32], | ||
} | ||
] | ||
|
||
TEST_CASE_2 = [ # inference | ||
{ | ||
"bundle_root": "models/endoscopic_tool_segmentation", | ||
"handlers#0#_disabled_": True, | ||
"preprocessing#transforms#2#spatial_size": [32, 32], | ||
} | ||
] | ||
|
||
|
||
class TestEndoscopicSeg(unittest.TestCase): | ||
def setUp(self): | ||
self.dataset_dir = tempfile.mkdtemp() | ||
dataset_size = 10 | ||
writer = PILWriter(np.uint8) | ||
shape = (736, 480) | ||
for mode in ["train", "val", "test"]: | ||
for sub_folder in ["inbody", "outbody"]: | ||
sample_dir = os.path.join(self.dataset_dir, f"{mode}/{sub_folder}") | ||
os.makedirs(sample_dir) | ||
for s in range(dataset_size): | ||
image = np.random.randint(low=0, high=5, size=(3, *shape)).astype(np.int8) | ||
image_filename = os.path.join(sample_dir, f"{sub_folder}_{s}.jpg") | ||
writer.set_data_array(image, channel_dim=0) | ||
writer.write(image_filename, verbose=True) | ||
if mode != "test": | ||
label = np.random.randint(low=0, high=5, size=shape).astype(np.int8) | ||
label_filename = os.path.join(sample_dir, f"{sub_folder}_{s}_seg.jpg") | ||
writer.set_data_array(label, channel_dim=None) | ||
writer.write(label_filename, verbose=True) | ||
|
||
def tearDown(self): | ||
shutil.rmtree(self.dataset_dir) | ||
|
||
@parameterized.expand([TEST_CASE_1]) | ||
def test_train_eval_config(self, override): | ||
override["dataset_dir"] = self.dataset_dir | ||
bundle_root = override["bundle_root"] | ||
train_file = os.path.join(bundle_root, "configs/train.json") | ||
eval_file = os.path.join(bundle_root, "configs/evaluate.json") | ||
|
||
trainer = ConfigWorkflow( | ||
workflow="train", | ||
config_file=train_file, | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
**override, | ||
) | ||
check_workflow(trainer, check_properties=True) | ||
|
||
validator = ConfigWorkflow( | ||
# override train.json, thus set the workflow to "train" rather than "eval" | ||
workflow="train", | ||
config_file=[train_file, eval_file], | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
**override, | ||
) | ||
check_workflow(validator, check_properties=True) | ||
|
||
@parameterized.expand([TEST_CASE_2]) | ||
def test_infer_config(self, override): | ||
override["dataset_dir"] = self.dataset_dir | ||
bundle_root = override["bundle_root"] | ||
|
||
inferrer = ConfigWorkflow( | ||
workflow="infer", | ||
config_file=os.path.join(bundle_root, "configs/inference.json"), | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
**override, | ||
) | ||
check_workflow(inferrer, check_properties=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
119 changes: 119 additions & 0 deletions
119
ci/unit_tests/test_endoscopic_tool_segmentation_dist.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import shutil | ||
import tempfile | ||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from monai.data import PILWriter | ||
from parameterized import parameterized | ||
from utils import export_config_and_run_mgpu_cmd | ||
|
||
TEST_CASE_1 = [ | ||
{ | ||
"bundle_root": "models/endoscopic_tool_segmentation", | ||
"train#trainer#max_epochs": 1, | ||
"train#dataloader#num_workers": 1, | ||
"validate#dataloader#num_workers": 1, | ||
"train#deterministic_transforms#3#spatial_size": [32, 32], | ||
} | ||
] | ||
|
||
TEST_CASE_2 = [ | ||
{ | ||
"bundle_root": "models/endoscopic_tool_segmentation", | ||
"validate#dataloader#num_workers": 4, | ||
"train#deterministic_transforms#3#spatial_size": [32, 32], | ||
} | ||
] | ||
|
||
|
||
def test_order(test_name1, test_name2): | ||
def get_order(name): | ||
if "train" in name: | ||
return 1 | ||
if "eval" in name: | ||
return 2 | ||
if "infer" in name: | ||
return 3 | ||
return 4 | ||
|
||
return get_order(test_name1) - get_order(test_name2) | ||
|
||
|
||
class TestEndoscopicSegMGPU(unittest.TestCase): | ||
def setUp(self): | ||
self.dataset_dir = tempfile.mkdtemp() | ||
dataset_size = 10 | ||
writer = PILWriter(np.uint8) | ||
shape = (3, 256, 256) | ||
for mode in ["train", "val"]: | ||
for sub_folder in ["inbody", "outbody"]: | ||
sample_dir = os.path.join(self.dataset_dir, f"{mode}/{sub_folder}") | ||
os.makedirs(sample_dir) | ||
for s in range(dataset_size): | ||
image = np.random.randint(low=0, high=5, size=(3, *shape)).astype(np.int8) | ||
image_filename = os.path.join(sample_dir, f"{sub_folder}_{s}.jpg") | ||
writer.set_data_array(image, channel_dim=0) | ||
writer.write(image_filename, verbose=True) | ||
label = np.random.randint(low=0, high=5, size=shape).astype(np.int8) | ||
label_filename = os.path.join(sample_dir, f"{sub_folder}_{s}_seg.jpg") | ||
writer.set_data_array(label, channel_dim=None) | ||
writer.write(label_filename, verbose=True) | ||
|
||
def tearDown(self): | ||
shutil.rmtree(self.dataset_dir) | ||
|
||
@parameterized.expand([TEST_CASE_1]) | ||
def test_train_mgpu_config(self, override): | ||
override["dataset_dir"] = self.dataset_dir | ||
bundle_root = override["bundle_root"] | ||
train_file = os.path.join(bundle_root, "configs/train.json") | ||
mgpu_train_file = os.path.join(bundle_root, "configs/multi_gpu_train.json") | ||
output_path = os.path.join(bundle_root, "configs/train_override.json") | ||
n_gpu = torch.cuda.device_count() | ||
export_config_and_run_mgpu_cmd( | ||
config_file=[train_file, mgpu_train_file], | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
override_dict=override, | ||
output_path=output_path, | ||
ngpu=n_gpu, | ||
check_config=True, | ||
) | ||
|
||
@parameterized.expand([TEST_CASE_2]) | ||
def test_evaluate_mgpu_config(self, override): | ||
override["dataset_dir"] = self.dataset_dir | ||
bundle_root = override["bundle_root"] | ||
train_file = os.path.join(bundle_root, "configs/train.json") | ||
evaluate_file = os.path.join(bundle_root, "configs/evaluate.json") | ||
mgpu_evaluate_file = os.path.join(bundle_root, "configs/multi_gpu_evaluate.json") | ||
output_path = os.path.join(bundle_root, "configs/evaluate_override.json") | ||
n_gpu = torch.cuda.device_count() | ||
export_config_and_run_mgpu_cmd( | ||
config_file=[train_file, evaluate_file, mgpu_evaluate_file], | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
override_dict=override, | ||
output_path=output_path, | ||
ngpu=n_gpu, | ||
check_config=True, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
loader = unittest.TestLoader() | ||
loader.sortTestMethodsUsing = test_order | ||
unittest.main(testLoader=loader) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import json | ||
import os | ||
import shutil | ||
import sys | ||
import tempfile | ||
import unittest | ||
|
||
import nibabel as nib | ||
import numpy as np | ||
from monai.bundle import ConfigWorkflow | ||
from monai.data import create_test_image_3d | ||
from monai.utils import set_determinism | ||
from parameterized import parameterized | ||
from utils import check_workflow | ||
|
||
set_determinism(123) | ||
|
||
TEST_CASE_1 = [ # train, evaluate | ||
{ | ||
"bundle_root": "models/lung_nodule_ct_detection", | ||
"epochs": 3, | ||
"batch_size": 1, | ||
"val_interval": 2, | ||
"train#dataloader#num_workers": 1, | ||
"validate#dataloader#num_workers": 1, | ||
} | ||
] | ||
|
||
TEST_CASE_2 = [{"bundle_root": "models/lung_nodule_ct_detection"}] # inference | ||
|
||
|
||
def test_order(test_name1, test_name2): | ||
def get_order(name): | ||
if "train" in name: | ||
return 1 | ||
if "eval" in name: | ||
return 2 | ||
if "infer" in name: | ||
return 3 | ||
return 4 | ||
|
||
return get_order(test_name1) - get_order(test_name2) | ||
|
||
|
||
class TestLungNoduleDetection(unittest.TestCase): | ||
def setUp(self): | ||
self.dataset_dir = tempfile.mkdtemp() | ||
dataset_size = 3 | ||
train_patch_size = (192, 192, 80) | ||
dataset_json = {} | ||
|
||
img, _ = create_test_image_3d(train_patch_size[0], train_patch_size[1], train_patch_size[2], 2) | ||
image_filename = os.path.join(self.dataset_dir, "image.nii.gz") | ||
nib.save(nib.Nifti1Image(img, np.eye(4)), image_filename) | ||
label = [0, 0] | ||
box = [[108, 119, 131, 142, 26, 37], [132, 147, 149, 164, 25, 40]] | ||
data = {"box": box, "image": image_filename, "label": label} | ||
dataset_json["training"] = [data for _ in range(dataset_size)] | ||
dataset_json["validation"] = [data for _ in range(dataset_size)] | ||
|
||
self.ds_file = os.path.join(self.dataset_dir, "dataset.json") | ||
with open(self.ds_file, "w") as fp: | ||
json.dump(dataset_json, fp, indent=2) | ||
|
||
def tearDown(self): | ||
shutil.rmtree(self.dataset_dir) | ||
|
||
@parameterized.expand([TEST_CASE_1]) | ||
def test_train_eval_config(self, override): | ||
override["dataset_dir"] = self.dataset_dir | ||
override["data_list_file_path"] = self.ds_file | ||
bundle_root = override["bundle_root"] | ||
train_file = os.path.join(bundle_root, "configs/train.json") | ||
eval_file = os.path.join(bundle_root, "configs/evaluate.json") | ||
|
||
sys.path.append(bundle_root) | ||
trainer = ConfigWorkflow( | ||
workflow="train", | ||
config_file=train_file, | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
**override, | ||
) | ||
check_workflow(trainer, check_properties=False) | ||
|
||
validator = ConfigWorkflow( | ||
# override train.json, thus set the workflow to "train" rather than "eval" | ||
workflow="train", | ||
config_file=[train_file, eval_file], | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
**override, | ||
) | ||
check_workflow(validator, check_properties=False) | ||
|
||
@parameterized.expand([TEST_CASE_2]) | ||
def test_infer_config(self, override): | ||
override["dataset_dir"] = self.dataset_dir | ||
override["data_list_file_path"] = self.ds_file | ||
bundle_root = override["bundle_root"] | ||
|
||
inferrer = ConfigWorkflow( | ||
workflow="infer", | ||
config_file=os.path.join(bundle_root, "configs/inference.json"), | ||
logging_file=os.path.join(bundle_root, "configs/logging.conf"), | ||
meta_file=os.path.join(bundle_root, "configs/metadata.json"), | ||
**override, | ||
) | ||
check_workflow(inferrer, check_properties=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
loader = unittest.TestLoader() | ||
loader.sortTestMethodsUsing = test_order | ||
unittest.main(testLoader=loader) |
Oops, something went wrong.