Skip to content

RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

Notifications You must be signed in to change notification settings

younggyoseo/RE3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021)

Code for State Entropy Maximization with Random Encoders for Efficient Exploration.

In this repository, we provide code for RE3 algorithm described in the paper linked above. We provide code in three sub-directories: rad_re3 containing code for the combination of RE3 and RAD, dreamer_re3 containing code for the combination of RE3 and Dreamer, and a2c_re3 containing code for the combination of RE3 and A2C.

We also provide raw data(.csv) and code for visualization in the data directory.

If you find this repository useful for your research, please cite:

@inproceedings{seo2021state,
  title={State Entropy Maximization with Random Encoders for Efficient Exploration},
  author={Seo, Younggyo and Chen, Lili and Shin, Jinwoo and Lee, Honglak and Abbeel, Pieter and Lee, Kimin},
  booktitle={International Conference on Machine Learning},
  year={2021}
}

RAD + RE3

Our code is built on top of the DrQ repository.

Installation

You could install all dependencies by following command:

conda env install -f conda_env.yml

You should also install custom version of dm_control to run experiments on Walker Run Sparse and Cheetah Run Sparse. You could do this by following command:

cd ../envs/dm_control
pip install .

Instructions

RAD

python train.py env=hopper_hop batch_size=512 action_repeat=2 logdir=runs_rad_re3 use_state_entropy=false

RAD + RE3

python train.py env=hopper_hop batch_size=512 action_repeat=2 logdir=runs_rad_re3

We provide all scripts to reproduce Figure 4 (RAD, RAD + RE3) in scripts directory.

Dreamer + RE3

Our code is built on top of the Dreamer repository.

Installation

You could install all dependencies by following command:

pip3 install --user tensorflow-gpu==2.2.0
pip3 install --user tensorflow_probability
pip3 install --user git+git://github.com/deepmind/dm_control.git
pip3 install --user pandas
pip3 install --user matplotlib

# Install custom dm_control environments for walker_run_sparse / cheetah_run_sparse
cd ../envs/dm_control
pip3 install .

Instructions

Dreamer

python dreamer.py --logdir ./logdir/dmc_pendulum_swingup/dreamer/12345 --task dmc_pendulum_swingup --precision 32 --beta 0.0 --seed 12345

Dreamer + RE3

python dreamer.py --logdir ./logdir/dmc_pendulum_swingup/dreamer_re3/12345 --task dmc_pendulum_swingup --precision 32 --k 53 --beta 0.1 --seed 12345

We provide all scripts to reproduce Figure 4 (Dreamer, Dreamer + RE3) in scripts directory.

A2C + RE3

Training code can be found in rl-starter-files directory, which is forked from rl-starter-files, which uses a modified A2C implementation from torch-ac. Note that currently there is only support for A2C.

Installation

All of the dependencies are in the requirements.txt file in rl-starter-files. They can be installed manually or with the following command:

pip3 install -r requirements.txt

You will also need to install our cloned version of torch-ac with these commands:

cd torch-ac
pip3 install -e .

Instructions

See instructions in rl-starter-files directory. Example scripts can be found in rl-starter-files/rl-starter-files/run_sent.sh.

About

RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published