Skip to content

A Beautiful Flask Web API for Yolov7 (and custom) models

License

Notifications You must be signed in to change notification settings

yoyo2018520/Yolov7-Flask

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Yolov7 Flask

A Beautiful Flask Framework for Implementing the Latest Yolov7 Model

GitHub Repo stars GitHub followers GitHub watchers GitHub forks



I developed this API for the purpose of deploying my own Yolov7 model, which is a very accurate skin burn detector. For more information about that project please check out this repo:

https://github.com/Michael-OvO/Burn-Detection-Classification

Installation & Usage:

To run this, please make sure you follow the following steps:

a trained Yolov7 model (or you can also use the official pretrained yolov7 models), they can be downloaded here.

Once you have downloaded files, proceed to the next step. The feature of this web app is that it does not require a specific model name, as I have written code to directly search for the model file that is inside this directory (so you do not need to modify anything and just run it). But do note that please just put one model file into your directory a single time, or else the code will not run properly. - the green bar on top of the page will display which model is currently being inferenced on your machine.

Make sure you have met the following requirements:

- PyTorch >= 1.6

- flask

- and dependencies required by Yolov7 (if you git cloned the original yolov7 repo then simply run pip install -r requirements.txt inside the yolov7 repo)

then, to launch the app, run the following command:

$ FLASK_ENV=development FLASK_APP=app.py flask run

then, visit http://localhost:5000/ in your browser.

choose some pictures that the model has been trained on and test it out!

Demonstration:

I will be using yolov7-e6e.pt for this demo and I am currently working with a RTX 3070Ti.

My directory setup is like this:

Then running the app.py yields the following output:

(if it is first time running, it may take a while to download the original repo

Using cache found in C:[PATH/To/Your/Cache].cache\torch\hub\WongKinYiu_yolov7_main

                 from  n    params  module                                  arguments
  0                -1  1         0  models.common.ReOrg                     []
  1                -1  1      8800  models.common.Conv                      [12, 80, 3, 1]
  2                -1  1     70880  models.common.DownC                     [80, 160, 1]
  3                -1  1     10368  models.common.Conv                      [160, 64, 1, 1]
  4                -2  1     10368  models.common.Conv                      [160, 64, 1, 1]
  5                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
  6                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
  7                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
  8                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
  9                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 10                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 11[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 12                -1  1     51520  models.common.Conv                      [320, 160, 1, 1]
 13               -11  1     10368  models.common.Conv                      [160, 64, 1, 1]
 14               -12  1     10368  models.common.Conv                      [160, 64, 1, 1]
 15                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 16                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 17                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 18                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 19                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 20                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
 21[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 22                -1  1     51520  models.common.Conv                      [320, 160, 1, 1]
 23         [-1, -11]  1         0  models.common.Shortcut                  [1]
 24                -1  1    282560  models.common.DownC                     [160, 320, 1]
 25                -1  1     41216  models.common.Conv                      [320, 128, 1, 1]
 26                -2  1     41216  models.common.Conv                      [320, 128, 1, 1]
 27                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 28                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 29                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 30                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 31                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 32                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 33[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 34                -1  1    205440  models.common.Conv                      [640, 320, 1, 1]
 35               -11  1     41216  models.common.Conv                      [320, 128, 1, 1]
 36               -12  1     41216  models.common.Conv                      [320, 128, 1, 1]
 37                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 38                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 39                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 40                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 41                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 42                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
 43[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 44                -1  1    205440  models.common.Conv                      [640, 320, 1, 1]
 45         [-1, -11]  1         0  models.common.Shortcut                  [1]
 46                -1  1   1128320  models.common.DownC                     [320, 640, 1]
 47                -1  1    164352  models.common.Conv                      [640, 256, 1, 1]
 48                -2  1    164352  models.common.Conv                      [640, 256, 1, 1]
 49                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 50                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 51                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 52                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 53                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 54                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 55[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 56                -1  1    820480  models.common.Conv                      [1280, 640, 1, 1]
 57               -11  1    164352  models.common.Conv                      [640, 256, 1, 1]
 58               -12  1    164352  models.common.Conv                      [640, 256, 1, 1]
 59                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 60                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 61                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 62                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 63                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 64                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
 65[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 66                -1  1    820480  models.common.Conv                      [1280, 640, 1, 1]
 67         [-1, -11]  1         0  models.common.Shortcut                  [1]
 68                -1  1   3484800  models.common.DownC                     [640, 960, 1]
 69                -1  1    369408  models.common.Conv                      [960, 384, 1, 1]
 70                -2  1    369408  models.common.Conv                      [960, 384, 1, 1]
 71                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 72                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 73                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 74                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 75                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 76                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 77[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 78                -1  1   1845120  models.common.Conv                      [1920, 960, 1, 1]
 79               -11  1    369408  models.common.Conv                      [960, 384, 1, 1]
 80               -12  1    369408  models.common.Conv                      [960, 384, 1, 1]
 81                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 82                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 83                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 84                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 85                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 86                -1  1   1327872  models.common.Conv                      [384, 384, 3, 1]
 87[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
 88                -1  1   1845120  models.common.Conv                      [1920, 960, 1, 1]
 89         [-1, -11]  1         0  models.common.Shortcut                  [1]
 90                -1  1   7070080  models.common.DownC                     [960, 1280, 1]
 91                -1  1    656384  models.common.Conv                      [1280, 512, 1, 1]
 92                -2  1    656384  models.common.Conv                      [1280, 512, 1, 1]
 93                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
 94                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
 95                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
 96                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
 97                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
 98                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
 99[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
100                -1  1   3279360  models.common.Conv                      [2560, 1280, 1, 1]
101               -11  1    656384  models.common.Conv                      [1280, 512, 1, 1]
102               -12  1    656384  models.common.Conv                      [1280, 512, 1, 1]
103                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
104                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
105                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
106                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
107                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
108                -1  1   2360320  models.common.Conv                      [512, 512, 3, 1]
109[-1, -3, -5, -7, -8]  1         0  models.common.Concat                    [1]
110                -1  1   3279360  models.common.Conv                      [2560, 1280, 1, 1]
111         [-1, -11]  1         0  models.common.Shortcut                  [1]
112                -1  1  11887360  models.common.SPPCSPC                   [1280, 640, 1]
113                -1  1    308160  models.common.Conv                      [640, 480, 1, 1]
114                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
115                89  1    461760  models.common.Conv                      [960, 480, 1, 1]
116          [-1, -2]  1         0  models.common.Concat                    [1]
117                -1  1    369408  models.common.Conv                      [960, 384, 1, 1]
118                -2  1    369408  models.common.Conv                      [960, 384, 1, 1]
119                -1  1    663936  models.common.Conv                      [384, 192, 3, 1]
120                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
121                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
122                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
123                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
124                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
125[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
126                -1  1    922560  models.common.Conv                      [1920, 480, 1, 1]
127               -11  1    369408  models.common.Conv                      [960, 384, 1, 1]
128               -12  1    369408  models.common.Conv                      [960, 384, 1, 1]
129                -1  1    663936  models.common.Conv                      [384, 192, 3, 1]
130                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
131                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
132                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
133                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
134                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
135[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
136                -1  1    922560  models.common.Conv                      [1920, 480, 1, 1]
137         [-1, -11]  1         0  models.common.Shortcut                  [1]
138                -1  1    154240  models.common.Conv                      [480, 320, 1, 1]
139                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
140                67  1    205440  models.common.Conv                      [640, 320, 1, 1]
141          [-1, -2]  1         0  models.common.Concat                    [1]
142                -1  1    164352  models.common.Conv                      [640, 256, 1, 1]
143                -2  1    164352  models.common.Conv                      [640, 256, 1, 1]
144                -1  1    295168  models.common.Conv                      [256, 128, 3, 1]
145                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
146                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
147                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
148                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
149                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
150[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
151                -1  1    410240  models.common.Conv                      [1280, 320, 1, 1]
152               -11  1    164352  models.common.Conv                      [640, 256, 1, 1]
153               -12  1    164352  models.common.Conv                      [640, 256, 1, 1]
154                -1  1    295168  models.common.Conv                      [256, 128, 3, 1]
155                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
156                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
157                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
158                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
159                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
160[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
161                -1  1    410240  models.common.Conv                      [1280, 320, 1, 1]
162         [-1, -11]  1         0  models.common.Shortcut                  [1]
163                -1  1     51520  models.common.Conv                      [320, 160, 1, 1]
164                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
165                45  1     51520  models.common.Conv                      [320, 160, 1, 1]
166          [-1, -2]  1         0  models.common.Concat                    [1]
167                -1  1     41216  models.common.Conv                      [320, 128, 1, 1]
168                -2  1     41216  models.common.Conv                      [320, 128, 1, 1]
169                -1  1     73856  models.common.Conv                      [128, 64, 3, 1]
170                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
171                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
172                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
173                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
174                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
175[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
176                -1  1    102720  models.common.Conv                      [640, 160, 1, 1]
177               -11  1     41216  models.common.Conv                      [320, 128, 1, 1]
178               -12  1     41216  models.common.Conv                      [320, 128, 1, 1]
179                -1  1     73856  models.common.Conv                      [128, 64, 3, 1]
180                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
181                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
182                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
183                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
184                -1  1     36992  models.common.Conv                      [64, 64, 3, 1]
185[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
186                -1  1    102720  models.common.Conv                      [640, 160, 1, 1]
187         [-1, -11]  1         0  models.common.Shortcut                  [1]
188                -1  1    282560  models.common.DownC                     [160, 320, 1]
189         [-1, 162]  1         0  models.common.Concat                    [1]
190                -1  1    164352  models.common.Conv                      [640, 256, 1, 1]
191                -2  1    164352  models.common.Conv                      [640, 256, 1, 1]
192                -1  1    295168  models.common.Conv                      [256, 128, 3, 1]
193                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
194                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
195                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
196                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
197                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
198[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
199                -1  1    410240  models.common.Conv                      [1280, 320, 1, 1]
200               -11  1    164352  models.common.Conv                      [640, 256, 1, 1]
201               -12  1    164352  models.common.Conv                      [640, 256, 1, 1]
202                -1  1    295168  models.common.Conv                      [256, 128, 3, 1]
203                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
204                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
205                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
206                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
207                -1  1    147712  models.common.Conv                      [128, 128, 3, 1]
208[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
209                -1  1    410240  models.common.Conv                      [1280, 320, 1, 1]
210         [-1, -11]  1         0  models.common.Shortcut                  [1]
211                -1  1    872000  models.common.DownC                     [320, 480, 1]
212         [-1, 137]  1         0  models.common.Concat                    [1]
213                -1  1    369408  models.common.Conv                      [960, 384, 1, 1]
214                -2  1    369408  models.common.Conv                      [960, 384, 1, 1]
215                -1  1    663936  models.common.Conv                      [384, 192, 3, 1]
216                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
217                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
218                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
219                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
220                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
221[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
222                -1  1    922560  models.common.Conv                      [1920, 480, 1, 1]
223               -11  1    369408  models.common.Conv                      [960, 384, 1, 1]
224               -12  1    369408  models.common.Conv                      [960, 384, 1, 1]
225                -1  1    663936  models.common.Conv                      [384, 192, 3, 1]
226                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
227                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
228                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
229                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
230                -1  1    332160  models.common.Conv                      [192, 192, 3, 1]
231[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
232                -1  1    922560  models.common.Conv                      [1920, 480, 1, 1]
233         [-1, -11]  1         0  models.common.Shortcut                  [1]
234                -1  1   1768640  models.common.DownC                     [480, 640, 1]
235         [-1, 112]  1         0  models.common.Concat                    [1]
236                -1  1    656384  models.common.Conv                      [1280, 512, 1, 1]
237                -2  1    656384  models.common.Conv                      [1280, 512, 1, 1]
238                -1  1   1180160  models.common.Conv                      [512, 256, 3, 1]
239                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
240                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
241                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
242                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
243                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
244[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
245                -1  1   1639680  models.common.Conv                      [2560, 640, 1, 1]
246               -11  1    656384  models.common.Conv                      [1280, 512, 1, 1]
247               -12  1    656384  models.common.Conv                      [1280, 512, 1, 1]
248                -1  1   1180160  models.common.Conv                      [512, 256, 3, 1]
249                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
250                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
251                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
252                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
253                -1  1    590336  models.common.Conv                      [256, 256, 3, 1]
254[-1, -2, -3, -4, -5, -6, -7, -8]  1         0  models.common.Concat                    [1]
255                -1  1   1639680  models.common.Conv                      [2560, 640, 1, 1]
256         [-1, -11]  1         0  models.common.Shortcut                  [1]
257               187  1    461440  models.common.Conv                      [160, 320, 3, 1]
258               210  1   1844480  models.common.Conv                      [320, 640, 3, 1]
259               233  1   4149120  models.common.Conv                      [480, 960, 3, 1]
260               256  1   7375360  models.common.Conv                      [640, 1280, 3, 1]
261[257, 258, 259, 260]  1    817020  models.yolo.Detect                      [80, [[19, 27, 44, 40, 38, 94], [96, 68, 86, 152, 180, 137], [140, 301, 303, 264, 238, 542], [436, 615, 739, 380, 925, 792]], [320, 640, 960, 1280]]
C:PATH\TO\YOUR\anaconda3\lib\site-packages\torch\functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at  ..\aten\src\ATen\native\TensorShape.cpp:2157.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
Model Summary: 1032 layers, 151757244 parameters, 151757244 gradients, 211.6 GFLOPS

Adding autoShape... 
YOLOR  2022-8-24 torch 1.10.2 CUDA:0 (NVIDIA GeForce RTX 3070 Ti, 8191.375MB)

 * Debug mode: off
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
 * Running on http://YOUR_IP_ADDRESS:5000
Press CTRL+C to quit

Then, simply control + click on the address will bring you to the flask app.

The original yolov7 pretrained weights was trained on MS COCO dataset, so it could recognize a dog:

Have fun using this framework!

Todos:

  • Basic Functionalities and CSS layout
  • Model Indicator & Automatically search for model weights
  • Support for video
  • Support for webcam

(If there are requests to add these 2 features please let me know. I will consider adding it)

Acknowledgment:

This framework was rewritten from this repo:

https://github.com/robmarkcole/yolov5-flask

About

A Beautiful Flask Web API for Yolov7 (and custom) models

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.7%
  • HTML 3.0%
  • CSS 1.2%
  • Other 1.1%