Skip to content

Classification Of Digital Images Using MobileNet Architecture, Local Binary Pattern-Support Vector Machine (LBP-SVM), And Local Binary Pattern-Random Forest (LBP-RF)

License

Notifications You must be signed in to change notification settings

zeinhasan/Concreate-Cracking-Classification

Repository files navigation

Concreate-Cracking-Classification

Classification Of Digital Images Using MobileNet Architecture, Local Binary Pattern-Support Vector Machine (LBP-SVM), And Local Binary Pattern-Random Forest (LBP-RF)

Abstract

In recent developments, the presence of machine learning and deep learning in object classification in computer vision has brought about significant discoveries. One implementation of classification in computer vision is the classification of infrastructure conditions, in this case, concrete cracks. Digital image modeling can be done using several models, including Convolutional Neural Network architecture, Support Vector Machine (SVM), and Random Forest. This research was conducted to examine the performance of Convolutional Neural Network, Support Vector Machine (SVM), and Random Forest (RF) models in classifying digital images of concrete cracks. In this research, Local Binary Pattern (LBP) feature extraction is used for SVM and RF models, while MobileNet architecture is used for CNN because it has the advantage of low computational cost on devices with limited specifications. The classification performance in this research is measured using accuracy and F1 score. The result shows that the best classification performance among the MobileNet CNN, SVM, and RF models is achieved by the MobileNet CNN model with a width multiplier of 0.77, having the highest accuracy and F1 score of 99.8875% and 0.998875, with an inference time of 0.045502 (images/second). The Local Binary Pattern (LBP) feature extraction best model is obtained by RF with splitting rule Information Gain, num points=48, and radius=5, with an accuracy and F1 score of 97.775% and 0.97775 with inference time of 0.047936 (images/second). The LBP on the SVM model dan achieve accuracy and F1 score of 95.8624% and 0.958625, with inference time of 0.009384 (images/second) with parameters num points=24, radius=5, and polynomial kernel.

Keywords: Digital Image Classification, MobileNet Convolutional Neural Network, Support Vector Machine (SVM), Random Forest (RF), Local Binary Pattern (LBP)

Files

  1. S-1-2024-462305-abstract.pdf
  2. S-1-2024-462305-bibliography.pdf
  3. S-1-2024-462305-tableofcontent.pdf
  4. S-1-2024-462305-title.pdf

Citation

[1] Acharya, T., and Ray, A.K, 2005, Image processing - principles and applications, USA: Wiley-Interscience.

[2] Adeswastoto, H. and Islah, M, 2018, ANALISIS JENIS KERUSAKAN PADA BANGUNAN PERUMAHAN, Jurnal Teknik Industri Terintegrasi, 1, 2, pp.58–68, doi:https://doi.org/10.31004/jutin.v1i2.319.

[3] Akar, Ö. and Güngör, O, 2012, Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1, 2, pp.105–112, doi: https://doi.org/10.9733/jgg.241212.1.

[4] Ariyanto, A.S, 2020, ANALISIS JENIS KERUSAKAN PADA BANGUNAN GEDUNG BERTINGKAT (Studi Kasus pada Gedung Apartemen dan Hotel Candiland Semarang), Bangun Rekaprima: Majalah Ilmiah Pengembangan Rekayasa, Sosial dan Humaniora, 6, 1, pp.45–57, doi: https://doi.org/10.32497/bangunrekaprima.v6i1.

[5] Bain, L.J, and Engelhardt, M, 1992, Introduction to probability and mathematical statistics, 2nd ed, Duxbury classic series, Pacific Grove, CA: Duxbury/Thomson Learning Pacific Grove, CA.

[6] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., 1984, Classification and Regression Trees.

[7] Breiman, L, 2001, Random Forests. Machine Learning, 45, 1, pp.5–32, doi: https://doi.org/10.1023/A:1010933404324.

[8] Björkman, J, 2019, Evaluation of the Effects of Different Preprocessing Methods on OCR Results from Images with Varying Quality, kth.diva-portal.org, KTH ROYAL INSTITUTE OF TECHNOLOGY, Available at: https://kth.diva-portal.org/smash/record.jsf?pid=diva2:1368177

[9] Bosch, A., Zisserman, A, and Munoz, X, 2007, Image classification using random forests and ferns, IEEE 11th International Conference on Computer Vision pp.1–8, doi: https://doi.org/10.1109/ICCV.2007.4409066.

[10] Chollet, F, 2018, Deep Learning with Python, Shelter Island, New York: Manning Publications Co.

[11] Devella, S., Yohannes, Y. and Rahmawati, F.N, 2020, Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT, JATISI (Jurnal Teknik Informatika dan Sistem Informasi), jurnal.mdp.ac.id, 7, 2, pp.310-320.

[12] Devi, P. A. R. and Budiarti, R. P. N, 2020, “Image Classification with Shell Texture Feature Extraction Using Local Binary Pattern (LBP) Method”, Applied Technology and Computing Science Journal, 3, 1, pp. 48–57, doi: 10.33086/atcsj.v3i1.1745.

[13] Foody, G.M. and Mathur, A, 2004, A relative evaluation of multiclass image classification by support vector machines, ieeexplore.ieee.org, Available at: https://ieeexplore.ieee.org/document/1304900

[14] Goodfellow, I., Bengio, Y. and Courville, A, 2016, Deep learning, The MIT Press.

[15] Gonzales, Rafael C and Wood, Richard E, 2013, Digital Image Processing Fourth. USA: Pearson International Edition.

[16] Gunn, S. R. 1998, Support Vector Machines for Classification and Regression, Southampton: University of Southampton.

[17] Heaton, J, 2021, Applications of Deep Neural Networks, arXiv:2009.05673, 009.05673, doi: https://arxiv.org/abs/2009.05673.

[18] Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T. and Andreetto, M, 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Google Inc, doi: https://doi.org/10.48550/arXiv.1704.04861

[19] Ioffe, S. and Szegedy, C, 2015, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv.org. doi: https://arxiv.org/abs/1502.03167.

[20] Irianto, S.Y, 2016, Analisa citra digital dan content based image retrieval, 1st ed. Bandar Lampung: AURA.

[21] Janiesch, C., Zschech, P. and Heinrich, K, 2021, Machine learning and deep learning, Electronic Markets, 31, 3, pp.685–695, doi: https://doi.org/10.1007/s12525-021-00475-2.

[22] Kingma, D.P. and Ba, J, 2014, Adam: A Method for Stochastic Optimization, arXiv.org, Available at: https://arxiv.org/abs/1412.6980.

[23] Khuri, A.I. and Searle, S.R, 2017, Matrix algebra useful for statistics, 2 edition ed. Hoboken, New Jersey.: Wiley.

[24] Krizhevsky, A., Sutskever, I. and Hinton, G.E, 2012, ImageNet classification with deep convolutional neural networks, In: F. Pereira, C.J. Burges, L. Bottou and K.Q. Weinberger, eds., Advances in neural information processing systems. Curran Associates, Inc.

[25] Kruse, B., Gudmundsson, B., Antonsson, D., Hedblom, T., Linge, A., Lord, P. and Ohlsson, T, 1982, Hardware for image processing and analysis: The PICAP approach. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP ’82, Paris,

[26] France, May 35, 1982. pp.1187–1190. doi: https://doi.org/10.1109/ICASSP.1982.1171500.

[27] Kustituanto, B. and Badrudin, R, 1994, STATISTIKA 1: Deskriptif, 1 ,Gunadarma.

[28] Li, Z., Zhu, H. and Huang, M, 2021, A deep learning-based fine crack segmentation network on full-scale steel bridge images with complicated backgrounds. IEEE Access, vol 9, pp.114989–114997. doi: https://doi.org/10.1109/ACCESS.2021.3105279.

[29] Lind. D. A., Marchal, W. G., & Mason, R. D, 2002, Statistical Techniques in Business & Economics, New York: The McGraw-Hill Companies, Inc.

[30] Lindahl, T, 2007, Study of local binary patterns, Institutionen för teknik och naturvetenskap, p.41.

[31] Madani, A., Arnaout, R., Mofrad, M. and Arnaout, R, 2018, Fast and accurate view classification of echocardiograms using deep learning, npj Digital Medicine, 1, 1, doi: https://doi.org/10.1038/s41746-017-0013-1.

[32] Maryanto, B, 2017, Big Data Dan Pemanfaatannya Dalam Berbagai Sektor, Media Informatika, 16, 2, pp.14–19.

[33]Nurhopipah, A. and Hasanah, U, 2020, Dataset splitting techniques comparison for face classification on CCTV images, IJCCS (Indonesian Journal of Computing and Cybernetics Systems), Available at: https://jurnal.ugm.ac.id/ijccs/article/view/58092 (Accessed: 12 April 2024).

[34] Nuryadi, Astuti, T.D., Utami, E.S. and Budiantara, M, 2017, Dasar-Dasar Statistik Penelitian. Yogyakarta: SIBUKU MEDIA.

[35] Nicholas Hadinata, P., Simanta, D. and Eddy, L, 2021, Deep Convolutional Neural Network untuk Mendeteksi Retak pada Permukaan Beton yang MemilikiVoid, Journal of Sustainable Construction, 1, 1, pp.45–55.

[36] Pramudiono, I, 2003, Pengantar Data Mining: Menambang Permata Pengetahuan di Gunung Data, IlmuKomputer.com.

[37] Rilatupa, J, 2009, Indeks Kondisi Konstruksi Bangunan Tinggi Yang Dipengaruhi Oleh Serangan Rayap, Jurnal Sains dan Teknology Emas, 19, 1, pp.7–13.

[38] Robbins, H.E, 1951, A stochastic approximation method, Annals of Mathematical Statistics, vol 22, pp.400–407. https://api.semanticscholar.org/CorpusID:16945044.

[39] Rudin, C, 2019, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature Machine Intelligence, 1, 5, pp.206–215, doi: https://doi.org/10.1038/s422560190048x.

[40] Sari, Y.W, 2021, RINGKASAN 5 ANGKA – eksplorasidata.mipa.ugm.ac.id. Universitas Gadjah Mada Menara Ilmu Eskplorasi Dan Visualisasi Data, Available at: https://eksplorasidata.mipa.ugm.ac.id/2021/08/16/ringkasan-5-angka/

[41] Sekaran, U. and Bougie, R, 2016, Research Methods for Business: A Skill-Building Approach, 7th Edition, Wiley & Sons, West Sussex.

[42] Sharma, T., Nair, R. and Gomathi, S, 2022, Breast Cancer Image Classification using Transfer Learning and Convolutional Neural Network, International Journal of Modern Research, 2, 1, pp.8–16.

[43] Su, C. and Wang, W, 2020, Concrete Cracks Detection Using Convolutional NeuralNetwork Based on Transfer Learning, Mathematical Problems in Engineering, 2020, 7240129, pp.1–10, doi: https://doi.org/10.1155/2020/7240129.

[44] Szeliski, R, 2022, Computer Vision: Algorithms and Applications, Springer, London, ISBN-13: 978-1848829343, ISBN-10: 1848829345.

[45] Vidia, S., Afni, N., Putri Silmina, E. and Pangestu, I, 2021, Computer Vision Used to Monitor The Youth during The Pandemic Covid-19, Procedia of Engineering and Life Science, 1, 2.

[46] Zhang, Y. and Ling, C, 2018, A strategy to apply machine learning to small datasets in materials science, npj Computational Materials, 4, 1, doi: https://doi.org/10.1038/s41524-018-0081-z.

[47] Zhou, W., Wang, H. and Wan, Z, 2022, Ore Image Classification Based on Improved CNN, Computers and Electrical Engineering, 99, p.107819, doi: https://doi.org/10.1016/j.compeleceng.2022.107819.

[48] Zoubir, H., Rguig, M., El Aroussi, M., Chehri, A. and Saadane, R, 2022, Concrete Bridge Crack Image Classification Using Histograms of Oriented Gradients, Uniform Local Binary Patterns, and Kernel Principal Component Analysis. Electronics, 11, 20, p.3357, doi: https://doi.org/10.3390/electronics11203357.

About

Classification Of Digital Images Using MobileNet Architecture, Local Binary Pattern-Support Vector Machine (LBP-SVM), And Local Binary Pattern-Random Forest (LBP-RF)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published