This is the pytorch implementation of POLLA in the ACM TIST'21 paper: POLLA: Enhancing the Local Structure Awareness in Long Sequence Spatial-temporal Modeling.
- Python 3.6
- matplotlib == 3.1.1
- numpy == 1.19.4
- pandas == 0.25.1
- scikit_learn == 0.21.3
- torch == 1.8.0
- ...
Dependencies can be installed using the following command:
pip install -r requirements.txt
Commands for training model on METR-LA:
python -u main_polla_exp.py --model polladiff --data metr --seq_len 12 --pred_len 12 --d_model 64 --n_layers 3 --n_heads 8 --d_ff 256 --train_epochs 4 --patience 10 --itr 2 --loss mae
If you find this repository useful in your research, please consider citing the following paper:
@article{haoyietal-polla-2021,
author = {Haoyi Zhou and
Hao Peng and
Jieqi Peng and
Shuai Zhang and
Jianxin Li},
title = {{POLLA:} Enhancing the Local Structure Awareness in Long Sequence
Spatial-temporal Modeling},
journal = {{ACM} Transactions on Intelligent Systems and Technology},
volume = {12},
number = {6},
pages = {69:1--69:24},
year = {2021},
doi = {10.1145/3447987},
}
If you have any questions, feel free to contact Haoyi Zhou through email (zhouhaoyi1991@gmail.com) or Github issues. Pull requests are highly welcomed!