Skip to content

zhouhaoyi/POLLA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

POLLA: Enhancing the Local Structure Awareness in Long Sequence Spatial-temporal Modeling

This is the pytorch implementation of POLLA in the ACM TIST'21 paper: POLLA: Enhancing the Local Structure Awareness in Long Sequence Spatial-temporal Modeling.

Requirements

  • Python 3.6
  • matplotlib == 3.1.1
  • numpy == 1.19.4
  • pandas == 0.25.1
  • scikit_learn == 0.21.3
  • torch == 1.8.0
  • ...

Dependencies can be installed using the following command:

pip install -r requirements.txt

Train Commands

Commands for training model on METR-LA:

python -u main_polla_exp.py --model polladiff --data metr --seq_len 12 --pred_len 12 --d_model 64 --n_layers 3 --n_heads 8 --d_ff 256 --train_epochs 4 --patience 10 --itr 2 --loss mae

Citation

If you find this repository useful in your research, please consider citing the following paper: Hits

@article{haoyietal-polla-2021,
  author    = {Haoyi Zhou and
               Hao Peng and
               Jieqi Peng and
               Shuai Zhang and
               Jianxin Li},
  title     = {{POLLA:} Enhancing the Local Structure Awareness in Long Sequence
               Spatial-temporal Modeling},
  journal   = {{ACM} Transactions on Intelligent Systems and Technology},
  volume    = {12},
  number    = {6},
  pages     = {69:1--69:24},
  year      = {2021},
  doi       = {10.1145/3447987},
}

Contact

If you have any questions, feel free to contact Haoyi Zhou through email (zhouhaoyi1991@gmail.com) or Github issues. Pull requests are highly welcomed!

About

The official implementation of POLLA.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages