PyTorch implementation of PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION
Authors : Jihyeong Yoo, Daewoong Ahn
python3 main.py -h
usage: main.py [-h] [--gpus GPUS] [--cpus CPUS] [--save_dir SAVE_DIR]
[--img_num IMG_NUM] [--optim_G {adam,sgd}]
[--optim_D {adam,sgd}] [--loss {wgangp,lsgan}]
[--start_resl START_RESL] [--end_resl END_RESL]
[--beta [BETA [BETA ...]]] [--momentum MOMENTUM]
[--decay DECAY] [--gp_lambda GP_LAMBDA]
PGGAN
optional arguments:
-h, --help show this help message and exit
--gpus GPUS Select GPU Numbering | 0,1,2,3 |
--cpus CPUS The number of CPU workers
--save_dir SAVE_DIR Directory which models will be saved in
--img_num IMG_NUM The number of images to be used for each phase
--optim_G {adam,sgd}
--optim_D {adam,sgd}
--loss {wgangp,lsgan}
--start_resl START_RESL
--end_resl END_RESL
--beta [BETA [BETA ...]]
Beta for Adam optimizer
--momentum MOMENTUM Momentum for SGD optimizer
--decay DECAY Weight decay for optimizers
--gp_lambda GP_LAMBDA
Lambda as a weight of Gradient Panelty in WGAN-GP loss
- Evaluation Metric
- Upload Results
Reference: