Skip to content

zylbuaa/Rotation-Meanout-Network

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Rotation-Meanout-Network

Introduction

The implementation of "A Rotation Meanout Network with Invariance for Dermoscopy Image Classification and Retrieval"

Enviroments

  • Windows/Linux both support
  • python 3.8
  • PyTorch 1.9.0
  • torchvision

Model Usage

Classification Task

import torch
from classification_models.resnet import ResNet_RM

model = ResNet_RM(
        model_name='resnet18',
        thete_interval=90,
        pretrained=True,
        classes = 8, #ISIC2019
        device='cpu'
)

img = torch.randn(1, 3, 224, 224)
preds = model(img) #(1,8)

Retrieval Task

import torch
from retrieval_models.resnet_hash import ResNet_RM_Hash

model = ResNet_RM_Hash(
        model_name='resnet18',
        thete_interval=90,
        pretrained=True,
        classes = 8, #ISIC2019
        hash_bit = 16,
        device='cpu'
)

img = torch.randn(1, 3, 224, 224)
hashcode, preds = model(img) #(1.16),(1,8)

License

This project is licensed under the MIT License. See LICENSE for details

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%