Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Doubly periodic MA demo #144

Merged
merged 6 commits into from
Jan 8, 2025
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 174 additions & 0 deletions demos/monge_ampere_periodic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
# Movement of a doubly periodic mesh driven by a Monge-Ampère type equation
# =========================================================================

# In the `previous demo <./monge_ampere_ring.py.html>`__, we demonstrated mesh movement
# with the Monge-Ampère method, driven by a ring shaped monitor function. In this demo,
# we solve the same problem but on a doubly periodic mesh.
#
# Begin by importing from the namespaces of Firedrake and Movement. ::

from firedrake import *

from movement import *

# Create a doubly periodic mesh with the same resolution as in the previous demo. ::

n = 20
mesh = PeriodicUnitSquareMesh(n, n)

# Define the same monitor function and an instance of the :class:`~.MongeAmpereMover`
jwallwork23 marked this conversation as resolved.
Show resolved Hide resolved
# class. ::


def ring_monitor(mesh):
alpha = Constant(20.0)
beta = Constant(200.0)
gamma = Constant(0.15)
x, y = SpatialCoordinate(mesh)
r = (x - 0.5) ** 2 + (y - 0.5) ** 2
return Constant(1.0) + alpha / cosh(beta * (r - gamma)) ** 2


rtol = 1.0e-08
mover = MongeAmpereMover(mesh, ring_monitor, method="quasi_newton", rtol=rtol)
mover.move()

# This should give command line output similar to the following:
#
# .. code-block:: none
#
# 0 Volume ratio 11.49 Variation (σ/μ) 9.71e-01 Residual 9.19e-01
# 1 Volume ratio 7.98 Variation (σ/μ) 6.71e-01 Residual 5.12e-01
# 2 Volume ratio 5.60 Variation (σ/μ) 5.40e-01 Residual 3.58e-01
# 3 Volume ratio 7.09 Variation (σ/μ) 4.89e-01 Residual 2.98e-01
# 4 Volume ratio 5.60 Variation (σ/μ) 4.54e-01 Residual 2.58e-01
# 5 Volume ratio 7.48 Variation (σ/μ) 4.31e-01 Residual 2.22e-01
# 6 Volume ratio 6.91 Variation (σ/μ) 4.16e-01 Residual 2.07e-01
# 7 Volume ratio 8.46 Variation (σ/μ) 4.03e-01 Residual 1.82e-01
# 8 Volume ratio 7.68 Variation (σ/μ) 3.93e-01 Residual 1.71e-01
# 9 Volume ratio 7.65 Variation (σ/μ) 3.94e-01 Residual 1.60e-01
# 10 Volume ratio 7.51 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 11 Volume ratio 7.49 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 12 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 13 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 14 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 15 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 16 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 17 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 18 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 19 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 20 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 21 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 22 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 23 Volume ratio 7.48 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 24 Volume ratio 7.47 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 25 Volume ratio 7.43 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 26 Volume ratio 7.43 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 27 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 28 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 29 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 30 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 31 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 32 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 33 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 34 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 35 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 36 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 37 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 38 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 39 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 40 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 41 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 42 Volume ratio 7.42 Variation (σ/μ) 3.93e-01 Residual 1.59e-01
# 43 Volume ratio 7.58 Variation (σ/μ) 3.95e-01 Residual 1.60e-01
# 44 Volume ratio 7.80 Variation (σ/μ) 3.97e-01 Residual 1.60e-01
# 45 Volume ratio 8.32 Variation (σ/μ) 4.09e-01 Residual 1.70e-01
# 46 Volume ratio 9.19 Variation (σ/μ) 4.22e-01 Residual 1.84e-01
# 47 Volume ratio 9.70 Variation (σ/μ) 4.29e-01 Residual 1.78e-01
# 48 Volume ratio 9.40 Variation (σ/μ) 4.01e-01 Residual 1.29e-01
# 49 Volume ratio 10.47 Variation (σ/μ) 4.03e-01 Residual 1.04e-01
# 50 Volume ratio 9.84 Variation (σ/μ) 3.72e-01 Residual 8.48e-02
# 51 Volume ratio 10.24 Variation (σ/μ) 3.87e-01 Residual 7.56e-02
# 52 Volume ratio 9.07 Variation (σ/μ) 3.61e-01 Residual 5.80e-02
# 53 Volume ratio 9.81 Variation (σ/μ) 3.73e-01 Residual 4.61e-02
# 54 Volume ratio 8.79 Variation (σ/μ) 3.56e-01 Residual 3.42e-02
# 55 Volume ratio 9.36 Variation (σ/μ) 3.63e-01 Residual 2.55e-02
# 56 Volume ratio 8.79 Variation (σ/μ) 3.52e-01 Residual 1.92e-02
# 57 Volume ratio 9.10 Variation (σ/μ) 3.57e-01 Residual 1.44e-02
# 58 Volume ratio 8.79 Variation (σ/μ) 3.51e-01 Residual 1.11e-02
# 59 Volume ratio 8.96 Variation (σ/μ) 3.53e-01 Residual 8.45e-03
# 60 Volume ratio 8.79 Variation (σ/μ) 3.50e-01 Residual 6.54e-03
# 61 Volume ratio 8.89 Variation (σ/μ) 3.51e-01 Residual 5.04e-03
# 62 Volume ratio 8.79 Variation (σ/μ) 3.49e-01 Residual 3.88e-03
# 63 Volume ratio 8.85 Variation (σ/μ) 3.50e-01 Residual 2.99e-03
# 64 Volume ratio 8.80 Variation (σ/μ) 3.49e-01 Residual 2.27e-03
# 65 Volume ratio 8.83 Variation (σ/μ) 3.49e-01 Residual 1.73e-03
# 66 Volume ratio 8.80 Variation (σ/μ) 3.49e-01 Residual 1.29e-03
# 67 Volume ratio 8.82 Variation (σ/μ) 3.49e-01 Residual 9.63e-04
# 68 Volume ratio 8.80 Variation (σ/μ) 3.49e-01 Residual 6.87e-04
# 69 Volume ratio 8.82 Variation (σ/μ) 3.49e-01 Residual 4.97e-04
# 70 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 3.34e-04
# 71 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 2.29e-04
# 72 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 1.41e-04
# 73 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 8.91e-05
# 74 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 4.84e-05
# 75 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 2.72e-05
# 76 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 1.43e-05
# 77 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 1.07e-05
# 78 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 7.66e-06
# 79 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 5.59e-06
# 80 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 3.89e-06
# 81 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 2.76e-06
# 82 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 1.86e-06
# 83 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 1.28e-06
# 84 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 8.23e-07
# 85 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 5.42e-07
# 86 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 3.29e-07
# 87 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 2.04e-07
# 88 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 1.13e-07
# 89 Volume ratio 8.81 Variation (σ/μ) 3.49e-01 Residual 6.46e-08
# Solver converged in 89 iterations.
#
# Again, plot the adapted mesh: ::

import matplotlib.pyplot as plt
from firedrake.pyplot import triplot

fig, axes = plt.subplots()
triplot(mover.mesh, axes=axes)
axes.set_aspect(1)
plt.savefig("monge_ampere_periodic-adapted_mesh.jpg")

# .. figure:: monge_ampere_periodic-adapted_mesh.jpg
# :figwidth: 60%
# :align: center
#
# Observe that the outer boundary of the mesh is no longer square - each boundary
# segment has been warped. However, you might be able to convice yourself that the warp
# of the left boundary matches that of the right and that the warp of the top boundary
# matches that of the bottom. To be absolutely certain, let's check that the area of the
# mesh matches expectations. We can do this by simply integrating unity over the domain
# associated with the adapted mesh. ::

import numpy as np

expected_area = 1.0
assert np.isclose(assemble(Constant(1.0, domain=mover.mesh) * dx), expected_area)
jwallwork23 marked this conversation as resolved.
Show resolved Hide resolved

# .. rubric:: Exercise
#
# Looking at the solver output above, you might notice that the residual progress stalls
# for quite a few iterations before descending. Why might this be? Set up this demo and
# the previous one to record the residual values during the iteration. Re-run them and
# create a plot to compare the convergence progress on the same axes.
#
# In the `next demo <./monge_ampere_3d.py.html>`__, we will demonstrate
# that the Monge-Ampère method can also be applied in three dimensions.
#
# This tutorial can be dowloaded as a `Python script <monge_ampere_periodic.py>`__.
#
#
# .. rubric:: References
#
# .. bibliography::
# :filter: docname in docnames
18 changes: 9 additions & 9 deletions demos/monge_ampere1.py → demos/monge_ampere_ring.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,9 +58,9 @@
fig, axes = plt.subplots()
triplot(mesh, axes=axes)
axes.set_aspect(1)
plt.savefig("monge_ampere1-initial_mesh.jpg")
plt.savefig("monge_ampere_ring-initial_mesh.jpg")

# .. figure:: monge_ampere1-initial_mesh.jpg
# .. figure:: monge_ampere_ring-initial_mesh.jpg
# :figwidth: 60%
# :align: center
#
Expand Down Expand Up @@ -163,9 +163,9 @@ def ring_monitor(mesh):
fig, axes = plt.subplots()
triplot(mover.mesh, axes=axes)
axes.set_aspect(1)
plt.savefig("monge_ampere1-adapted_mesh.jpg")
plt.savefig("monge_ampere_ring-adapted_mesh.jpg")

# .. figure:: monge_ampere1-adapted_mesh.jpg
# .. figure:: monge_ampere_ring-adapted_mesh.jpg
# :figwidth: 60%
# :align: center
#
Expand All @@ -177,9 +177,9 @@ def ring_monitor(mesh):
axes.set_xlim([0.15, 0.3])
axes.set_ylim([0.15, 0.3])
axes.set_aspect(1)
plt.savefig("monge_ampere1-adapted_mesh_zoom.jpg")
plt.savefig("monge_ampere_ring-adapted_mesh_zoom.jpg")

# .. figure:: monge_ampere1-adapted_mesh_zoom.jpg
# .. figure:: monge_ampere_ring-adapted_mesh_zoom.jpg
# :figwidth: 60%
# :align: center
#
Expand All @@ -190,10 +190,10 @@ def ring_monitor(mesh):
# the initial mesh. Use it to check for tangling after the mesh movement has been
# applied.
#
# In the `next demo <./monge_ampere_3d.py.html>`__, we will demonstrate
# that the Monge-Ampère method can also be applied in three dimensions.
# In the `next demo <./monge_ampere_periodic.py.html>`__, we will demonstrate
# that the Monge-Ampère method can also be to periodic meshes.
#
# This tutorial can be dowloaded as a `Python script <monge_ampere1.py>`__.
# This tutorial can be dowloaded as a `Python script <monge_ampere_ring.py>`__.
#
#
# .. rubric:: References
Expand Down
3 changes: 2 additions & 1 deletion test/test_demos.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,9 @@
changes_dict = {"rtol = 1.0e-08": "rtol = 1.0e-03", "n = 20": "n = 10"}
modifications = {
"monge_ampere_3d.py": changes_dict,
"monge_ampere1.py": changes_dict,
"monge_ampere_helmholtz.py": changes_dict,
"monge_ampere_ring.py": changes_dict,
"monge_ampere_periodic.py": changes_dict,
}


Expand Down
Loading