Skip to content

Commit

Permalink
Remove experiment ID
Browse files Browse the repository at this point in the history
Update tests

Fixes after rebase

test fixes

fix default output

w
  • Loading branch information
nefrathenrici committed May 16, 2024
1 parent b8a2a3a commit f406377
Show file tree
Hide file tree
Showing 16 changed files with 78 additions and 168 deletions.
3 changes: 1 addition & 2 deletions docs/src/api.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,8 @@
## Model Interface

```@docs
ClimaCalibrate.get_config
ClimaCalibrate.set_up_forward_model
ClimaCalibrate.run_forward_model
ClimaCalibrate.get_forward_model
ClimaCalibrate.observation_map
```

Expand Down
9 changes: 4 additions & 5 deletions docs/src/atmos_setup_guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,9 @@ To calibrate parameters, you need:
- Truth and noise data
- Observation map script with a function `observation_map(iteration)`

These components are detailed in the guide below. Examples of all of these can also be found in `experiments/sphere_held_suarez_rhoe_equilmoist`
These components are detailed in the guide below. Examples of all of these can also be found in ClimaAtmos in `calibration/experiments/sphere_held_suarez_rhoe_equilmoist`

First, create a folder for your experiment with a descriptive experiment id in the `experiments/` folder. All of the components described below will be stored in this folder.
First, create a folder for your experiment with a descriptive name in the `calibration/experiments/` folder. All of the components described below will be stored in this folder.

## Atmos Configuration File

Expand Down Expand Up @@ -96,8 +96,7 @@ Constraint constructors:

The observation map is applied to process model output diagnostics into the exact observable used to fit to observations. In a perfect model setting it is used also to generate the observation.

Your observation map file must export a function `observation_map(::Val{:<experiment_id>}, iteration)`, this function is specific to each experiment, so it is dispatched on the `experiment_id`.
These requirements arise from the update step, which runs the function with your given experiment ID.
These requirements arise from the update step, which runs the `observation_map` function.
This function must load in model diagnostics for each ensemble member in the iteration and construct an array `arr = Array{Float64}(undef, dims..., ensemble_size)` such that
`arr[:, i]` will return the i-th ensemble member's observation map output. Note this floating point precision is required for the EKI update step.

Expand All @@ -113,7 +112,7 @@ First, construct the array to store the ensemble's observations. Then, for each
Pseudocode for `observation_map(iteration)`:

```julia
function observation_map(::Val{:sphere_held_suarez_rhoe_equilmoist}, iteration)
function observation_map(iteration)
# Get Configuration
config_file = joinpath("calibration", "sphere_held_suarez_rhoe_equilmoist")
config = ExperimentConfig(config_file)
Expand Down
3 changes: 2 additions & 1 deletion docs/src/emulate_sample.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,8 @@ import ClimaCalibrate as CAL
```

Next, load in the data, EKP object, and prior distribution. These values are taken
from the perfect model experiment with experiment ID `sphere_held_suarez_rhoe_equilmoist`.
from the Held-Suarez perfect model experiment in ClimaAtmos.

```julia
asset_path = joinpath(
pkgdir(CAL),
Expand Down
6 changes: 2 additions & 4 deletions docs/src/precompilation.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ For ClimaCalibrate, this is useful under certain conditions:
2. **The model runtime is short compared to the compile time.** If the model runtime is an order of magnitude or more than the compilation time, any benefit from reduced compilation time will be trivial.

# How do I precompile my configuration?
The easiest way is by copying and pasting the code snippet below into `src/ClimaCalibrate.jl` and replacing the `job_id` with your experiment ID.
The easiest way is by copying and pasting the code snippet below into `src/ClimaCalibrate.jl`.
This will precompile the model step and all callbacks for the given configuration.
```julia
using PrecompileTools
Expand All @@ -16,10 +16,8 @@ import ClimaAtmos as CA
import YAML

@setup_workload begin
config_file = "your experiment dir"
ExperimentConfig(config_file; output_dir = "precompilation")
config_file = Dict("FLOAT_TYPE" => "Float64")
@compile_workload begin
initialize(job_id)
config = CA.AtmosConfig(config_dict)
simulation = CA.get_simulation(config)
(; integrator) = simulation
Expand Down
6 changes: 3 additions & 3 deletions experiments/surface_fluxes_perfect_model/generate_data.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
# generate_data: generate true y, noise and x_inputs
experiment_id = "surface_fluxes_perfect_model"

import SurfaceFluxes as SF
import SurfaceFluxes.Parameters as SFPP
Expand All @@ -10,8 +9,9 @@ import SurfaceFluxes.Parameters: SurfaceFluxesParameters
using ClimaCalibrate

pkg_dir = pkgdir(ClimaCalibrate)
experiment_path = "$pkg_dir/experiments/$experiment_id"
data_path = "$experiment_path/data"
experiment_path =
joinpath(pkg_dir, "experiments", "surface_fluxes_perfect_model")
data_path = joinpath(experiment_path, "data")
include(joinpath(experiment_path, "model_interface.jl"))

FT = Float32
Expand Down
31 changes: 7 additions & 24 deletions experiments/surface_fluxes_perfect_model/model_interface.jl
Original file line number Diff line number Diff line change
@@ -1,11 +1,6 @@
import EnsembleKalmanProcesses as EKP
using ClimaCalibrate
import ClimaCalibrate:
AbstractPhysicalModel,
get_config,
run_forward_model,
get_forward_model,
ExperimentConfig
import ClimaCalibrate: set_up_forward_model, run_forward_model, ExperimentConfig
import YAML

"""
Expand All @@ -32,7 +27,6 @@ We need to follow the following steps for the calibration:
4. define the prior distributions for θ (this is subjective and can be based on expert knowledge or previous studies)
"""
struct SurfaceFluxModel <: AbstractPhysicalModel end

experiment_dir = joinpath(
pkgdir(ClimaCalibrate),
Expand All @@ -42,34 +36,23 @@ experiment_dir = joinpath(
include(joinpath(experiment_dir, "sf_model.jl"))
include(joinpath(experiment_dir, "observation_map.jl"))

function get_forward_model(::Val{:surface_fluxes_perfect_model})
return SurfaceFluxModel()
end

function get_config(
model::SurfaceFluxModel,
member,
iteration,
experiment_dir::AbstractString,
)
return get_config(
model,
function set_up_forward_model(member, iteration, experiment_dir::AbstractString)
return set_up_forward_model(
member,
iteration,
ExperimentConfig(experiment_dir),
)
end

"""
get_config(member, iteration, experiment_dir::AbstractString)
get_config(member, iteration, experiment_config::ExperimentConfig)
set_up_forward_model(member, iteration, experiment_dir::AbstractString)
set_up_forward_model(member, iteration, experiment_config::ExperimentConfig)
Returns an config dictionary object for the given member and iteration.
Given an experiment dir, it will load the ExperimentConfig
This assumes that the config dictionary has the `output_dir` key.
"""
function get_config(
::SurfaceFluxModel,
function set_up_forward_model(
member,
iteration,
experiment_config::ExperimentConfig,
Expand Down Expand Up @@ -103,7 +86,7 @@ end
Runs the model with the given an AbstractDict object.
"""

function run_forward_model(::SurfaceFluxModel, config::AbstractDict)
function run_forward_model(config::AbstractDict)
x_inputs = load_profiles(config["x_data_file"])
FT = typeof(x_inputs.profiles_int[1].T)
obtain_ustar(FT, x_inputs, config)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ experiment_dir = joinpath(
Returns the observation map (from the raw model output to the observable y),
as specified by process_member_data, for the given iteration.
"""
function observation_map(::Val{:surface_fluxes_perfect_model}, iteration)
function observation_map(iteration)
config = ExperimentConfig(experiment_dir)
(; output_dir, ensemble_size) = config
model_output = "model_ustar_array.jld2"
Expand Down
10 changes: 2 additions & 8 deletions experiments/surface_fluxes_perfect_model/postprocessing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@ using ClimaCalibrate
experiment_dir = dirname(Base.active_project())
experiment_config = ClimaCalibrate.ExperimentConfig(experiment_dir)
output_dir = experiment_config.output_dir
experiment_id = experiment_config.id
N_iter = experiment_config.n_iterations
N_mem = experiment_config.ensemble_size

Expand Down Expand Up @@ -103,9 +102,7 @@ end


pkg_dir = pkgdir(ClimaCalibrate)
model_config = YAML.load_file(
joinpath(pkg_dir, "experiments", experiment_id, "model_config.yml"),
)
model_config = YAML.load_file(joinpath(experiment_dir, "model_config.yml"))

eki_path = joinpath(
ClimaCalibrate.path_to_iteration(output_dir, N_iter),
Expand Down Expand Up @@ -133,10 +130,7 @@ include(joinpath(experiment_dir, "model_interface.jl"))
f = Makie.Figure()
ax = Makie.Axis(f[1, 1], xlabel = "Iteration", ylabel = "Model Ustar")
ustar_obs = JLD2.load_object(
joinpath(
pkg_dir,
"experiments/$experiment_id/data/synthetic_ustar_array_noisy.jld2",
),
joinpath(pkg_dir, "$experiment_dir/data/synthetic_ustar_array_noisy.jld2"),
)
x_inputs = load_profiles(model_config["x_data_file"])

Expand Down
12 changes: 4 additions & 8 deletions src/backends.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,19 +47,15 @@ calibrate(b::Type{JuliaBackend}, experiment_dir::AbstractString) =

function calibrate(::Type{JuliaBackend}, config::ExperimentConfig)
initialize(config)
(; n_iterations, id, ensemble_size) = config
(; n_iterations, ensemble_size) = config
eki = nothing
physical_model = get_forward_model(Val(Symbol(id)))
for i in 0:(n_iterations - 1)
@info "Running iteration $i"
for m in 1:ensemble_size
run_forward_model(
physical_model,
get_config(physical_model, m, i, config),
)
run_forward_model(set_up_forward_model(m, i, config))
@info "Completed member $m"
end
G_ensemble = observation_map(Val(Symbol(id)), i)
G_ensemble = observation_map(i)
save_G_ensemble(config, i, G_ensemble)
eki = update_ensemble(config, i)
end
Expand Down Expand Up @@ -150,7 +146,7 @@ function calibrate(
)
report_iteration_status(statuses, output_dir, iter)
@info "Completed iteration $iter, updating ensemble"
G_ensemble = observation_map(Val(Symbol(config.id)), iter)
G_ensemble = observation_map(iter)
save_G_ensemble(config, iter, G_ensemble)
eki = update_ensemble(config, iter)
end
Expand Down
7 changes: 1 addition & 6 deletions src/ekp_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@ ExperimentConfig holds the configuration for a calibration experiment.
This can be constructed from a YAML configuration file or directly using individual parameters.
"""
struct ExperimentConfig
id::AbstractString
n_iterations::Integer
ensemble_size::Integer
observations::Any
Expand All @@ -40,10 +39,7 @@ function ExperimentConfig(filepath::AbstractString; kwargs...)
error("Invalid experiment configuration filepath: `$filepath`")
end

experiment_id =
get(config_dict, "experiment_id", last(splitdir(experiment_dir)))
default_output =
haskey(ENV, "CI") ? experiment_id : joinpath("output", experiment_id)
default_output = joinpath(experiment_dir, "output")
output_dir = get(config_dict, "output_dir", default_output)

n_iterations = config_dict["n_iterations"]
Expand All @@ -65,7 +61,6 @@ function ExperimentConfig(filepath::AbstractString; kwargs...)
prior = get_prior(prior_path)

return ExperimentConfig(
experiment_id,
n_iterations,
ensemble_size,
observations,
Expand Down
53 changes: 12 additions & 41 deletions src/model_interface.jl
Original file line number Diff line number Diff line change
@@ -1,66 +1,37 @@
import EnsembleKalmanProcesses as EKP
import YAML

"""
AbstractPhysicalModel

Abstract type to define the interface for physical models.
"""
abstract type AbstractPhysicalModel end
set_up_forward_model(member, iteration, experiment_dir::AbstractString)
set_up_forward_model(member, iteration, experiment_config::ExperimentConfig)
"""
get_config(physical_model::AbstractPhysicalModel, member, iteration, experiment_path::AbstractString)
get_config(physical_model::AbstractPhysicalModel, member, iteration, experiment_config)
Set up and configure a single member's forward model. Used in conjunction with `run_forward_model`.
Fetch the model information for a specific ensemble member and iteration based on a provided path.
This function must be overriden by a component's model interface and
should set things like the parameter path and other member-specific settings.
"""
function get_config(
physical_model::AbstractPhysicalModel,
member,
iteration,
experiment_path::AbstractString,
)
experiment_config = ExperimentConfig(experiment_path)
return get_config(physical_model, member, iteration, experiment_config)
end
set_up_forward_model(member, iteration, experiment_dir::AbstractString) =
set_up_forward_model(member, iteration, ExperimentConfig(experiment_dir))

get_config(
physical_model::AbstractPhysicalModel,
member,
iteration,
experiment_config,
) = error("get_config not implemented for $physical_model")
set_up_forward_model(member, iteration, experiment_config::ExperimentConfig) =
error("set_up_forward_model not implemented")

"""
run_forward_model(physical_model::AbstractPhysicalModel, config)
run_forward_model(config)
Executes the forward model simulation with the given configuration.
The `config` should be obtained from `get_config`.
`config` should be obtained from `set_up_forward_model`.
This function should be overridden with model-specific implementation details.
"""
run_forward_model(physical_model::AbstractPhysicalModel, model_config) =
error("run_forward_model not implemented for $physical_model")

"""
get_forward_model(experiment_id::Val)
Retrieves a custom physical model struct for the specified experiment ID.
Throws an error if the experiment ID is unrecognized.
"""
function get_forward_model(experiment_id::Val)
error("get_forward_model not implemented for $experiment_id")
end
run_forward_model(model_config) = error("run_forward_model not implemented")

"""
observation_map(val:Val, iteration)
Runs the observation map for the specified iteration.
This function must be implemented for each calibration experiment.
"""
function observation_map(val::Val, iteration)
error(
"observation_map not implemented for experiment $val at iteration $iteration",
)
function observation_map(iteration)
error("observation_map not implemented")
end
16 changes: 7 additions & 9 deletions src/slurm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
kwargs(; kwargs...) = Dict{Symbol, Any}(kwargs...)

"""
generate_sbatch_script
generate_sbatch_script
"""
Expand Down Expand Up @@ -47,11 +47,7 @@ function generate_sbatch_script(
model_interface = "$model_interface"; include(model_interface)
experiment_dir = "$experiment_dir"
experiment_config = CAL.ExperimentConfig(experiment_dir)
experiment_id = experiment_config.id
physical_model = CAL.get_forward_model(Val(Symbol(experiment_id)))
CAL.run_forward_model(physical_model, CAL.get_config(physical_model, member, iteration, experiment_dir))
@info "Forward Model Run Completed" experiment_id physical_model iteration member'
CAL.run_forward_model(CAL.set_up_forward_model(member, iteration, experiment_dir))'
"""
return sbatch_contents
end
Expand Down Expand Up @@ -157,7 +153,8 @@ If verbose, includes the ensemble member's output.
"""
function log_member_error(output_dir, iteration, member, verbose = false)
member_log = path_to_model_log(output_dir, iteration, member)
warn_str = "Ensemble member $member raised an error. See model log at $(abspath(member_log)) for stacktrace"
warn_str = """Ensemble member $member raised an error. See model log at \
$(abspath(member_log)) for stacktrace"""
if verbose
stacktrace = replace(readchomp(member_log), "\\n" => "\n")
warn_str = warn_str * ": \n$stacktrace"
Expand All @@ -167,9 +164,11 @@ end

function report_iteration_status(statuses, output_dir, iter)
all(job_completed.(statuses)) || error("Some jobs are not complete")

if all(job_failed, statuses)
error(
"Full ensemble for iteration $iter has failed. See model logs in $(abspath(path_to_iteration(output_dir, iter))) for details.",
"""Full ensemble for iteration $iter has failed. See model logs in
$(abspath(path_to_iteration(output_dir, iter)))""",
)
elseif any(job_failed, statuses)
@warn "Failed ensemble members: $(findall(job_failed, statuses))"
Expand Down Expand Up @@ -246,5 +245,4 @@ function format_slurm_time(minutes::Int)
)
end
end

format_slurm_time(str::AbstractString) = str
1 change: 0 additions & 1 deletion test/ekp_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ n_iterations = 1
ensemble_size = 10

config = CAL.ExperimentConfig(
"test",
n_iterations,
ensemble_size,
observations,
Expand Down
Loading

0 comments on commit f406377

Please sign in to comment.