Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Port LDM Tutorials #1775

Merged
merged 12 commits into from
Aug 13, 2024
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -152,3 +152,8 @@ deployment/ray/mednist_classifier_start.py
3d_segmentation/out
*.nsys-rep
auto3dseg/notebooks/datalist.json

*.jpeg
*.png
*.np*
*.pt
1,012 changes: 1,012 additions & 0 deletions generation/2d_ldm/2d_ldm_tutorial.ipynb

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion generation/2d_ldm/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# 2D Latent Diffusion Example
This folder contains an example for training and validating a 2D Latent Diffusion Model on Brats axial slices. The example includes support for multi-GPU training with distributed data parallelism.
This folder contains examples for training and validating a 2D Latent Diffusion Model on MedNIST and Brats axial slice data. The notebook [2d_ldm_tutorial.ipynb](./2d_ldm_tutorial.ipynb) demonstrates these concepts with the MedNIST dataset. The larger example given in Python files and explained here uses Brats and includes support for multi-GPU training with distributed data parallelism.

The workflow of the Latent Diffusion Model is depicted in the figure below. It begins by training an autoencoder in pixel space to encode images into latent features. Following that, it trains a diffusion model in the latent space to denoise the noisy latent features. During inference, it first generates latent features from random noise by applying multiple denoising steps using the trained diffusion model. Finally, it decodes the denoised latent features into images using the trained autoencoder.
<p align="center">
Expand Down
12 changes: 6 additions & 6 deletions generation/2d_ldm/config/config_train_16g.json
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@
"latent_channels": 1,
"sample_axis": 2,
"autoencoder_def": {
"_target_": "generative.networks.nets.AutoencoderKL",
"_target_": "monai.networks.nets.AutoencoderKL",
"spatial_dims": "@spatial_dims",
"in_channels": "$@image_channels",
"out_channels": "@image_channels",
"latent_channels": "@latent_channels",
"num_channels": [
"channels": [
64,
128,
256
Expand All @@ -33,15 +33,15 @@
"perceptual_weight": 1.0,
"kl_weight": 1e-6,
"recon_loss": "l1",
"n_epochs": 1000,
"max_epochs": 1000,
"val_interval": 1
},
"diffusion_def": {
"_target_": "generative.networks.nets.DiffusionModelUNet",
"_target_": "monai.networks.nets.DiffusionModelUNet",
"spatial_dims": "@spatial_dims",
"in_channels": "@latent_channels",
"out_channels": "@latent_channels",
"num_channels":[32, 64, 128, 256],
"channels":[32, 64, 128, 256],
"attention_levels":[false, true, true, true],
"num_head_channels":[0, 32, 32, 32],
"num_res_blocks": 2
Expand All @@ -50,7 +50,7 @@
"batch_size": 50,
"patch_size": [256,256],
"lr": 1e-5,
"n_epochs": 1500,
"max_epochs": 1500,
"val_interval": 2,
"lr_scheduler_milestones": [1000]
},
Expand Down
12 changes: 6 additions & 6 deletions generation/2d_ldm/config/config_train_32g.json
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@
"latent_channels": 1,
"sample_axis": 2,
"autoencoder_def": {
"_target_": "generative.networks.nets.AutoencoderKL",
"_target_": "monai.networks.nets.AutoencoderKL",
"spatial_dims": "@spatial_dims",
"in_channels": "$@image_channels",
"out_channels": "@image_channels",
"latent_channels": "@latent_channels",
"num_channels": [
"channels": [
64,
128,
256
Expand All @@ -33,15 +33,15 @@
"perceptual_weight": 1.0,
"kl_weight": 1e-6,
"recon_loss": "l1",
"n_epochs": 1000,
"max_epochs": 1000,
"val_interval": 1
},
"diffusion_def": {
"_target_": "generative.networks.nets.DiffusionModelUNet",
"_target_": "monai.networks.nets.DiffusionModelUNet",
"spatial_dims": "@spatial_dims",
"in_channels": "@latent_channels",
"out_channels": "@latent_channels",
"num_channels":[32, 64, 128, 256],
"channels":[32, 64, 128, 256],
"attention_levels":[false, true, true, true],
"num_head_channels":[0, 32, 32, 32],
"num_res_blocks": 2
Expand All @@ -50,7 +50,7 @@
"batch_size": 80,
"patch_size": [256,256],
"lr": 1e-5,
"n_epochs": 1500,
"max_epochs": 1500,
"val_interval": 2,
"lr_scheduler_milestones": [1000]
},
Expand Down
4 changes: 2 additions & 2 deletions generation/2d_ldm/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,8 @@

import numpy as np
import torch
from generative.inferers import LatentDiffusionInferer
from generative.networks.schedulers import DDPMScheduler
from monai.inferers import LatentDiffusionInferer
from monai.networks.schedulers import DDPMScheduler
from monai.config import print_config
from monai.utils import set_determinism
from PIL import Image
Expand Down
12 changes: 6 additions & 6 deletions generation/2d_ldm/train_autoencoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,8 @@
from pathlib import Path

import torch
from generative.losses import PatchAdversarialLoss, PerceptualLoss
from generative.networks.nets import PatchDiscriminator
from monai.losses import PatchAdversarialLoss, PerceptualLoss
from monai.networks.nets import PatchDiscriminator
from monai.config import print_config
from monai.utils import set_determinism
from torch.nn import L1Loss, MSELoss
Expand Down Expand Up @@ -75,7 +75,7 @@ def main():
set_determinism(42)

# Step 1: set data loader
size_divisible = 2 ** (len(args.autoencoder_def["num_channels"]) - 1)
size_divisible = 2 ** (len(args.autoencoder_def["channels"]) - 1)
train_loader, val_loader = prepare_brats2d_dataloader(
args,
args.autoencoder_train["batch_size"],
Expand All @@ -95,7 +95,7 @@ def main():
discriminator = PatchDiscriminator(
spatial_dims=args.spatial_dims,
num_layers_d=3,
num_channels=32,
channels=32,
in_channels=1,
out_channels=1,
norm=discriminator_norm,
Expand Down Expand Up @@ -172,12 +172,12 @@ def main():

# Step 4: training
autoencoder_warm_up_n_epochs = 5
n_epochs = args.autoencoder_train["n_epochs"]
max_epochs = args.autoencoder_train["max_epochs"]
val_interval = args.autoencoder_train["val_interval"]
best_val_recon_epoch_loss = 100.0
total_step = 0

for epoch in range(n_epochs):
for epoch in range(max_epochs):
# train
autoencoder.train()
discriminator.train()
Expand Down
18 changes: 9 additions & 9 deletions generation/2d_ldm/train_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,11 @@

import torch
import torch.nn.functional as F
from generative.inferers import LatentDiffusionInferer
from generative.networks.schedulers import DDPMScheduler
from monai.inferers import LatentDiffusionInferer
from monai.networks.schedulers import DDPMScheduler
from monai.config import print_config
from monai.utils import first, set_determinism
from torch.cuda.amp import GradScaler, autocast
from torch.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from utils import define_instance, prepare_brats2d_dataloader, setup_ddp
Expand Down Expand Up @@ -75,7 +75,7 @@ def main():
set_determinism(42)

# Step 1: set data loader
size_divisible = 2 ** (len(args.autoencoder_def["num_channels"]) + len(args.diffusion_def["num_channels"]) - 2)
size_divisible = 2 ** (len(args.autoencoder_def["channels"]) + len(args.diffusion_def["channels"]) - 2)
train_loader, val_loader = prepare_brats2d_dataloader(
args,
args.diffusion_train["batch_size"],
Expand Down Expand Up @@ -114,7 +114,7 @@ def main():
# and the results will not differ from those obtained when it is not used._

with torch.no_grad():
with autocast(enabled=True):
with autocast("cuda", enabled=True):
check_data = first(train_loader)
z = autoencoder.encode_stage_2_inputs(check_data["image"].to(device))
if rank == 0:
Expand Down Expand Up @@ -179,14 +179,14 @@ def main():
)

# Step 4: training
n_epochs = args.diffusion_train["n_epochs"]
max_epochs = args.diffusion_train["max_epochs"]
val_interval = args.diffusion_train["val_interval"]
autoencoder.eval()
scaler = GradScaler()
total_step = 0
best_val_recon_epoch_loss = 100.0

for epoch in range(start_epoch, n_epochs):
for epoch in range(start_epoch, max_epochs):
unet.train()
lr_scheduler.step()
if ddp_bool:
Expand All @@ -196,7 +196,7 @@ def main():
images = batch["image"].to(device)
optimizer_diff.zero_grad(set_to_none=True)

with autocast(enabled=True):
with autocast("cuda", enabled=True):
# Generate random noise
noise_shape = [images.shape[0]] + list(z.shape[1:])
noise = torch.randn(noise_shape, dtype=images.dtype).to(device)
Expand Down Expand Up @@ -239,7 +239,7 @@ def main():
unet.eval()
val_recon_epoch_loss = 0
with torch.no_grad():
with autocast(enabled=True):
with autocast("cuda", enabled=True):
# compute val loss
for step, batch in enumerate(val_loader):
images = batch["image"].to(device)
Expand Down
Loading
Loading