-
Notifications
You must be signed in to change notification settings - Fork 1
/
hsequences_bench.py
217 lines (174 loc) · 10.1 KB
/
hsequences_bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os, pickle
import numpy as np
from tqdm import tqdm
from COKENET.config_hpatches import get_eval_config
import HSequences_bench.tools.aux_tools as aux
import HSequences_bench.tools.geometry_tools as geo_tools
import HSequences_bench.tools.repeatability_tools as rep_tools
import HSequences_bench.tools.matching_tools as match_tools
from HSequences_bench.tools.HSequences_reader import HSequences_dataset
from HSequences_bench.tools.opencv_matcher import OpencvBruteForceMatcher
def hsequences_metrics():
args = get_eval_config()
print(args.split)
aux.check_directory(args.results_bench_dir)
# create the dataloader
data_loader = HSequences_dataset(args.data_dir, args.split, args.split_path)
results = aux.create_overlapping_results(args.detector_name, args.overlap)
# matching method
matcher = OpencvBruteForceMatcher('l2')
count_seq = 0
# load data and compute the keypoints
iterate = tqdm(enumerate(data_loader.extract_hsequences()), total=len(data_loader.sequences), desc="HPatches Eval")
print("HPatches evaluation using Keypoints and Descriptors.")
for sample_id, sample_data in iterate:
sequence = sample_data['sequence_name']
count_seq += 1
image_src = sample_data['im_src']
images_dst = sample_data['images_dst']
h_src_2_dst = sample_data['h_src_2_dst']
h_dst_2_src = sample_data['h_dst_2_src']
for idx_im in range(len(images_dst)):
# create the mask to filter out the points outside of the common areas
mask_src, mask_dst = geo_tools.create_common_region_masks(h_dst_2_src[idx_im], image_src.shape, images_dst[idx_im].shape)
# compute the files paths
src_pts_filename = os.path.join(args.results_dir,args.detector_name,
'hpatches-sequences-release', '{}/1.ppm.kpt.npy'.format(sample_data['sequence_name']))
src_dsc_filename = os.path.join(args.results_dir,args.detector_name,
'hpatches-sequences-release', '{}/1.ppm.dsc.npy'.format(sample_data['sequence_name']))
dst_pts_filename = os.path.join(args.results_dir,args.detector_name,
'hpatches-sequences-release', '{}/{}.ppm.kpt.npy'.format(sample_data['sequence_name'], idx_im+2))
dst_dsc_filename = os.path.join(args.results_dir,args.detector_name,
'hpatches-sequences-release', '{}/{}.ppm.dsc.npy'.format(sample_data['sequence_name'], idx_im+2))
if not os.path.isfile(src_pts_filename):
print("Could not find the file: " + src_pts_filename)
return False
if not os.path.isfile(src_dsc_filename):
print("Could not find the file: " + src_dsc_filename)
return False
if not os.path.isfile(dst_pts_filename):
print("Could not find the file: " + dst_pts_filename)
return False
if not os.path.isfile(dst_dsc_filename):
print("Could not find the file: " + dst_dsc_filename)
return False
# load the points
src_pts = np.load(src_pts_filename)
src_dsc = np.load(src_dsc_filename)
dst_pts = np.load(dst_pts_filename)
dst_dsc = np.load(dst_dsc_filename)
if args.order_coord == 'xysr':
src_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], src_pts)))
dst_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], dst_pts)))
# Check Common Points
try:
src_idx = rep_tools.check_common_points(src_pts, mask_src)
# print(src_idx)
src_pts = src_pts[src_idx]
src_dsc = src_dsc[src_idx]
dst_idx = rep_tools.check_common_points(dst_pts, mask_dst)
dst_pts = dst_pts[dst_idx]
dst_dsc = dst_dsc[dst_idx]
except:
continue
# Select top K points
if args.top_k_points:
src_idx = rep_tools.select_top_k(src_pts, args.top_k_points)
src_pts = src_pts[src_idx]
src_dsc = src_dsc[src_idx]
dst_idx = rep_tools.select_top_k(dst_pts, args.top_k_points)
dst_pts = dst_pts[dst_idx]
dst_dsc = dst_dsc[dst_idx]
src_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], src_pts)))
dst_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], dst_pts)))
src_to_dst_pts = geo_tools.apply_homography_to_points(
src_pts, h_src_2_dst[idx_im])
dst_to_src_pts = geo_tools.apply_homography_to_points(
dst_pts, h_dst_2_src[idx_im])
if args.dst_to_src_evaluation:
points_src = src_pts
points_dst = dst_to_src_pts
else:
points_src = src_to_dst_pts
points_dst = dst_pts
# compute repeatability
repeatability_results = rep_tools.compute_repeatability(points_src, points_dst, overlap_err=1-args.overlap,
dist_match_thresh=args.pixel_threshold)
# match descriptors
matches = matcher.match(src_dsc, dst_dsc)
matches_np = aux.convert_opencv_matches_to_numpy(matches)
matches_inv = matcher.match(dst_dsc, src_dsc)
matches_inv_np = aux.convert_opencv_matches_to_numpy(matches_inv)
mask = matches_np[:, 0] == matches_inv_np[matches_np[:, 1], 1]
matches_np = matches_np[mask]
match_score, match_score_corr, num_matches = {}, {}, {}
# compute matching based on pixel distance
for th_i in range(1, 11):
match_score_i, match_score_corr_i, num_matches_i = match_tools.compute_matching_based_distance(points_src, points_dst, matches_np,
repeatability_results['total_num_points'],
pixel_threshold=th_i,
possible_matches=repeatability_results['possible_matches'])
match_score[str(th_i)] = match_score_i
match_score_corr[str(th_i)] = match_score_corr_i
num_matches[str(th_i)] = num_matches_i
mma = np.mean([match_score[str(idx)] for idx in match_score])
results['rep_single_scale'].append(
repeatability_results['rep_single_scale'])
results['rep_multi_scale'].append(
repeatability_results['rep_multi_scale'])
results['num_points_single_scale'].append(
repeatability_results['num_points_single_scale'])
results['num_points_multi_scale'].append(
repeatability_results['num_points_multi_scale'])
results['error_overlap_single_scale'].append(
repeatability_results['error_overlap_single_scale'])
results['error_overlap_multi_scale'].append(
repeatability_results['error_overlap_multi_scale'])
results['mma'].append(match_score[str(args.pixel_threshold)])
results['mma_corr'].append(match_score_corr[str(args.pixel_threshold)])
results['num_matches'].append(num_matches[str(args.pixel_threshold)])
results['num_mutual_corresp'].append(len(matches_np))
results['avg_mma'].append(mma)
results['num_features'].append(repeatability_results['total_num_points'])
## logging
iterate.set_description("{} {} / {} - {} rep_s {:.2f} , rep_m {:.2f}, p_s {:d} , p_m {:d}, eps_s {:.2f}, eps_m {:.2f} "
.format(sequence, count_seq, len(data_loader.sequences), idx_im,
repeatability_results['rep_single_scale'], repeatability_results['rep_multi_scale'], repeatability_results['num_points_single_scale'],
repeatability_results['num_points_multi_scale'], repeatability_results['error_overlap_single_scale'], repeatability_results['error_overlap_multi_scale']
) )
# average the results
rep_single = np.array(results['rep_single_scale']).mean()
rep_multi = np.array(results['rep_multi_scale']).mean()
error_overlap_s = np.array(results['error_overlap_single_scale']).mean()
error_overlap_m = np.array(results['error_overlap_multi_scale']).mean()
mma = np.array(results['mma']).mean()
mma_corr = np.array(results['mma_corr']).mean()
num_matches = np.array(results['num_matches']).mean()
num_mutual_corresp = np.array(results['num_mutual_corresp']).mean()
avg_mma = np.array(results['avg_mma']).mean()
num_features = np.array(results['num_features']).mean()
# Matching Score: Matching Score taking into account all features that have been
# detected in any of the two images.
# Matching Score (possible matches): Matching Score only taking into account those features that have been
# detected in both images.
# MMA Score is computed based on the Matching Score (all detected features)
print('\n## Overlap @{0}:\n \
#### Rep. Multi: {1:.4f}\n \
#### Rep. Single: {2:.4f}\n \
#### Overlap Multi: {3:.4f}\n \
#### Overlap Single: {4:.4f}\n \
#### MMA: {5:.4f}\n \
#### MMA (possible matches): {6:.4f}\n \
#### Num matches: {7:.4f}\n \
#### Num Mutual Correspondences: {8:.4f}\n \
#### Avg. over Threshold MMA: {9:.4f}\n \
#### Num Feats: {10:.4f}'.format(
args.overlap, rep_multi, rep_single, error_overlap_s, error_overlap_m, mma,
mma_corr, num_matches, num_mutual_corresp, avg_mma, num_features))
# Store data (serialize)
output_file_path = os.path.join(args.results_bench_dir, '{0}_{1}.pickle'
.format(args.detector_name, args.split))
with open(output_file_path, 'wb') as handle:
pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
hsequences_metrics()